摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
An ultrasound system that generates compound images from component frames having decorrelated speckle patterns. Successive sets of distinct, speckle-affecting parameters are used to generate successive component frames for compounding, and are selected such that the successive component frames have decorrelated speckle patterns. The speckle-affecting parameters that are changed from frame to frame may be selected from a wide variety of parameters, including transmit beamformer parameters, receive beamformer parameters, and demodulator parameters. According to a preferred embodiment, the successive sets of speckle-affecting parameters differ from each other by at least two speckle-affecting parameters. According to another preferred embodiment, the amount by which each of the multiple speckle-affecting parameters is changed is less than a decorrelation threshold for that parameter, that is, by less that the amount that speckle-affecting parameter alone would be required to change in order to yield decorrelated speckle patterns if no other parameters were changed. When more speckle-affecting parameters are changed, each speckle-affecting parameter can be changed by an amount less than its decorrelation threshold, and yet decorrelated speckle patterns can still be obtained. Moreover, because two different types of speckle-affecting parameters tend to alter the spatial resolution of the component frames in different ways, the spatial resolution of the compounded image can be better as compared to the scenario in which only one speckle-affecting parameter is altered by its decorrelation threshold.
摘要:
Disclosed are 3-aryl-6-aryl-[1,2,4]triazolo[4,3-α]pyridines thereof, represented by the Formula (I) wherein Ar1, Ar2, R1—R3 are defined herein. Compounds having Formula (I) are inhibitors of cell proliferation. Therefore, compounds of the invention may be used to treat clinical conditions in which uncontrolled growth and spread of abnormal cells occurs.
摘要:
Disclosed are 3-aryl-6-aryl-[1,2,4]triazolo[4,3-a]pyridines thereof, represented by the Formula (I) wherein Ar1, Ar2, R1-R3 are defined herein. Compounds having Formula (I) are inhibitors of cell proliferation. Therefore, compounds of the invention may be used to treat clinical conditions in which uncontrolled growth and spread of abnormal cells occurs.
摘要:
Disclosed are 1-(arylmethyl)quinazoline-2,4(1H,3H)-diones thereof, represented by the Formula (I) wherein Ar, R1-R6 are defined herein. Compounds having Formula (I) are PARP inhibitors. Therefore, compounds of the invention may be used to treat clinical conditions that are responsive to the inhibition of PARP activity.