摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
In one embodiment, an ultrasound imaging method comprises: providing a probe that includes one or more transducer elements for transmitting and receiving ultrasound waves; generating a sequence of spatially distinct transmit beams which differ in one or more of origin and angle; determining a transmit beam spacing substantially based upon a combination of actual and desired transmit beam characteristics, thereby achieving a faster echo acquisition rate compared to a transmit beam spacing based upon round-trip transmit-receive beam sampling requirements; storing coherent receive echo data, from two or more transmit beams of the spatially distinct transmit beams; combining coherent receive echo data from at least two or more transmit beams to achieve a substantially spatially invariant synthesized transmit focus at each echo location; and combining coherent receive echo data from each transmit firing to achieve dynamic receive focusing at each echo location.
摘要:
An ultrasonic imaging method includes activating a transmit aperture within a multi-element transducer array, transmitting one or more ultrasonic beams along scan direction(s) that span the region of interest, for each transmit event, receiving ultrasound echoes from each element of a receive aperture, grouping the receive channel echo data into two or more sets corresponding to different receive sub-apertures, combining each sub-aperture data set to generate partially focused echo-location data for one or more reconstruction lines, and storing all the sub-aperture echo data sets during a storage period in a format that can be retrieved for later analysis. A method includes, during a post-storage period, retrieving stored sub-aperture data, combining the sub-aperture data to form one or more selected reconstruction lines, processing echo data to extract motion information from one or more sample positions along the selected reconstruction lines, and displaying an image representative of the processed motion information.
摘要:
In one embodiment, an ultrasound imaging method comprises: providing a probe that includes one or more transducer elements for transmitting and receiving ultrasound waves; generating a sequence of spatially distinct transmit beams which differ in one or more of origin and angle; determining a transmit beam spacing substantially based upon a combination of actual and desired transmit beam characteristics, thereby achieving a faster echo acquisition rate compared to a transmit beam spacing based upon round-trip transmit-receive beam sampling requirements; storing coherent receive echo data, from two or more transmit beams of the spatially distinct transmit beams; combining coherent receive echo data from at least two or more transmit beams to achieve a substantially spatially invariant synthesized transmit focus at each echo location; and combining coherent receive echo data from each transmit firing to achieve dynamic receive focusing at each echo location.
摘要:
Embodiments of the present invention provide an ultrasound scanner equipped with an image data processing unit that can perform adaptive parameter optimization during image formation and processing. In one embodiment, an ultrasound system comprises a channel data memory to store channel data obtained by digitizing ultrasound image data produced by an image scan; an image data processor configured to process the stored channel data in the memory to reconstruct an ultrasound image for each of a plurality of trial values of at least one parameter to be optimized; and a parameter optimization unit configured to evaluate an image quality of the reconstructed ultrasound image for each trial value of the at least one parameter, and to determine the optimized value of the at least one parameter based on the evaluated image quality.
摘要:
In one embodiment, an ultrasound imaging method comprises: providing a probe that includes one or more transducer elements for transmitting and receiving ultrasound waves; generating a sequence of spatially distinct transmit beams which differ in one or more of origin and angle; determining a transmit beam spacing substantially based upon a combination of actual and desired transmit beam characteristics, thereby achieving a faster echo acquisition rate compared to a transmit beam spacing based upon round-trip transmit-receive beam sampling requirements; storing coherent receive echo data, from two or more transmit beams of the spatially distinct transmit beams; combining coherent receive echo data from at least two or more transmit beams to achieve a substantially spatially invariant synthesized transmit focus at each echo location; and combining coherent receive echo data from each transmit firing to achieve dynamic receive focusing at each echo location.
摘要:
A method, non-transitory computer readable medium, and apparatus that includes obtaining, by a dosimetry computing device, sensor readings from at least one sensor. An event is identified, by the dosimetry computing device, based on at least one of one or more of the obtained sensor readings or one or more determinations based on the obtained sensor readings meeting one or more selection. At least one of the one or more determinations or the sensor readings which meet one or more of the selection criteria when the event is identified is stored by the dosimetry computing device.