摘要:
A method includes receiving a first control information from a network access node, the first control information comprising a plurality of fields defining control information elements that are relevant to a resource allocation; receiving a second control information from the network access node, the second control information comprising a plurality of fields defining control information elements that are relevant to the resource allocation; and declaring the resource allocation to be a persistent resource allocation if at least one of the plurality of fields of the second control information is the same as one of the plurality of fields of the first control information. Also disclosed are computer programs and apparatus for carrying out the method, as well as a network access node configured to compose first control information and second control information for expressing resource allocations.
摘要:
A method includes simultaneously receiving a first communication using a first radio access technology and a second communication using a second radio access technology, and using only the first radio access technology, transmitting first feedback information for the first communication and second feedback information for the second communication to a network device that performed the first communication. A method includes, using a first radio access technology, receiving first feedback information for a first communication that used the first radio access technology and second feedback information for a second communication that used a second radio access technology. The method also includes, using the first feedback information in association with a subsequent communication using the first radio access technology, and communicating the second feedback information to a network entity that performed the second communication. Program products and apparatus are also disclosed.
摘要:
A method includes simultaneously receiving a first communication using a first radio access technology and a second communication using a second radio access technology, and using only the first radio access technology, transmitting first feedback information for the first communication and second feedback information for the second communication to a network device that performed the first communication. A method includes, using a first radio access technology, receiving first feedback information for a first communication that used the first radio access technology and second feedback information for a second communication that used a second radio access technology. The method also includes, using the first feedback information in association with a subsequent communication using the first radio access technology, and communicating the second feedback information to a network entity that performed the second communication. Program products and apparatus are also disclosed.
摘要:
One or more hybrid automatic repeat request process identifications are configured for scheduling without associated control signaling. A particular HARQ process ID to be assumed for a given subframe is determined based on at least one of: a) system frame number; b) number of hybrid automatic repeat request processes that are allocated for semi-persistent scheduling; and c) periodicity for semi-persistent scheduling. In various embodiments: a) is broadcast and b) and c) are sent via RRC signaling; and the assumed particular HARQ process ID is determined as a function of [Current TTI/SP_Period] mod Num_SP_HARQ:wherein Current TTI is a number for the given subframe derived from the system frame number and the term [Current TTI/SP_Period] is rounded to an integer prior to the modulo operation; SP_Period is the periodicity of the semi-persistent scheduling; and Num_SP_HARQ is the number of hybrid automatic repeat request processes that are allocated for semi-persistent scheduling.
摘要:
One or more hybrid automatic repeat request process identifications are configured for scheduling without associated control signaling. A particular HARQ process ID to be assumed for a given subframe is determined based on at least one of: a) system frame number; b) number of hybrid automatic repeat request processes that are allocated for semi-persistent scheduling; and c) periodicity for semi-persistent scheduling. In various embodiments: a) is broadcast and b) and c) are sent via RRC signaling; and the assumed particular HARQ process ID is determined as a function of [Current TTI/SP_Period] mod Num_SP_HARQ:wherein Current TTI is a number for the given subframe derived from the system frame number and the term [Current TTI/SP_Period] is rounded to an integer prior to the modulo operation; SP_Period is the periodicity of the semi-persistent scheduling; and Num_SP_HARQ is the number of hybrid automatic repeat request processes that are allocated for semi-persistent scheduling.
摘要:
In accordance with an exemplary embodiment of the invention, one or more first channels and one or more second channels are stored in a linear buffer. More specifically, the one or more first channels are stored in a first primary region of the linear buffer, and the one or more second channels are stored in a second primary region of the linear buffer, where if the second primary region is not large enough to store all of the second channels, one or more excess second channels are stored in a secondary area of the linear buffer.
摘要:
In one non-limiting, exemplary embodiment, a method includes: receiving a message including a resource allocation map having a first portion and a second portion; utilizing the first portion to determine a specific mapping scheme of a plurality of mapping schemes, wherein the determined specific mapping scheme is used for the second portion; and obtaining, based on the determined specific mapping scheme, resource allocation information based on the second portion. In another non-limiting, exemplary embodiment, a method includes: generating a message including a resource allocation map having a first portion and a second portion, wherein the first portion is indicative of a specific mapping scheme of a plurality of mapping schemes that are applicable to the second portion; and transmitting the generated message.
摘要:
In one non-limiting, exemplary embodiment, a method includes: receiving a message including a resource allocation map having a first portion and a second portion; utilizing the first portion to determine a specific mapping scheme of a plurality of mapping schemes, wherein the determined specific mapping scheme is used for the second portion; and obtaining, based on the determined specific mapping scheme, resource allocation information based on the second portion. In another non-limiting, exemplary embodiment, a method includes: generating a message including a resource allocation map having a first portion and a second portion, wherein the first portion is indicative of a specific mapping scheme of a plurality of mapping schemes that are applicable to the second portion; and transmitting the generated message.
摘要:
The exemplary embodiments of this invention provide a multi-stage approach, where, for example, one number can signal a first type of resource allocation (e.g., a consecutive allocation) or a second type of resource allocation (e.g., a best-M allocation based on best-M channel quality information). In one exemplary embodiment, a method includes: allocating a plurality of resource blocks to obtain a resource allocation; and signaling the resource allocation using an n-bit number, where the n-bit number expresses a value from an overall range of values having a first range of values and a second range of values, where a value within the first range of values specifies a first type of resource allocation and where a value within the second range of values specifies a second type of resource allocation, where the first type of resource allocation is different from the second type of resource allocation.
摘要:
The specification and drawings present a new method, apparatus and software related product (e.g., a computer readable memory) for implementing a D2D discovery resource allocation by a network for D2D discovery by UEs belonging to multiple cells in a D2D discovery area, e.g., in LTE wireless systems. A network such as LTE may determine an allocation of one or more resources (UL and/or DL) for a device-to-device discovery among a plurality of UEs located in multiple cells of the network in a D2D discovery area. The allocation of the one or more resources is then may be provided by the network to the plurality of UEs for performing, using these one or more resources, the D2D discovery between any two UEs of the plurality of UEs located in the multiple cells in the D2D discovery area.