摘要:
A catheter for delivering radiant energy, such as a laser beam, is used in a technique to controllably apply the radiant energy in a patient's body, such as in a blood vessel. The radiant energy is applied in a manner which erodes biological material and may be used to drill through vascular obstructions. The catheter emits the radiant energy from its distal end in a pattern which defines a relatively small working region in which the energy density level is sufficiently high to remove the biological material. The energy distribution is substantially uniform across the beam. Distally beyond the working region, the energy density of the beam decays sharply so that biological material beyond the working region is not removed.
摘要:
A catheter having optical fibers for delivering laser energy to a blood vessel to remove obstructions in the blood vessel is adapted to be guided controllably and selectively by a guide wire to the site to be treated. The catheter includes a central lumen which is open at the distal end of the catheter and which receives the guide wire so that the catheter may be advanced over the guide wire. A relatively few number of optical fibers are contained within and extend longitudinally of the catheter wall. The distal tip of the catheter is provided with a cylindrical optically transparent end cap and means are provided to securely mount the distal ends of the optical fibers with respect to the end cap so that the light emitted from the ends of the fibers passes through the cylindrical wall of the end cap and is emitted at the distal emissions face of the end cap. The catheter embodies a special construction of an inner catheter core and a surrounding sheath which provides for a high degree of flexibility to enable the catheter to be passed through tortuous passages in a patient's vasculature. The inner core is formed from a plurality of articulated segments and is surrounded by a thin flexible sheath. Longitudinal flutes formed along the articulated segments of the core receive and retain the optical fibers in a manner which permits the fibers, sheath and core to shift longitudinally with respect to each other to provide a very high degree of flexibility for the composition catheter.
摘要:
Devices for providing polymeric layers on the interior surface of body lumens and spaces are disclosed. The devices can include proximal and distal occlusion elements to define the treatment space and an optical emitter to provide light for a photopolymerization procedure. The devices may include a molding member for providing a thick polymeric gel. Alternatively, devices without a molding member may be used to carry out an interfacial polymerization procedure.
摘要:
Devices for providing polymeric layers on the interior surface of body lumens and spaces are disclosed. The devices can include proximal and distal occlusion elements to define the treatment space and an optical emitter to provide light for a photopolymerization procedure. The devices may include a molding member for providing a thick polymeric gel. Alternatively, devices without a molding member may be used to carry out an interfacial polymerization procedure.
摘要:
A method and apparatus for molding polymeric structures in vivo is disclosed. The structures comprise polymers that may be heated to their molding temperature by absorption of visible or near-visible wavelengths of light. By providing a light source that produces radiation of the wavelength absorbed by the polymeric material, the material may be selectively heated and shaped in vivo without a corresponding heating of adjacent tissues or fluids to unacceptable levels. The apparatus comprises a catheter having a shaping element positioned near its distal end. An emitter provided with light from at least one optical fiber is positioned within the shaping element. The emitter serves to provide a moldable polymeric article positioned on the shaping element with a substantially uniform light field, thereby allowing the article to be heated and molded at a desired treatment site in a body lumen.
摘要:
A method and apparatus for molding polymeric structures in vivo is disclosed. The structures comprise polymers that may be heated to their molding temperature by absorption of visible or near-visible wavelengths of light. By providing a light source that produces radiation of the wavelength absorbed by the polymeric material, the material may be selectively heated and shaped in vivo without a corresponding heating of adjacent tissues or fluids to unacceptable levels. The apparatus comprises a catheter having a shaping element positioned near its distal end. An emitter provided with light from at least one optical fiber is positioned within the shaping element. The emitter serves to provide a moldable polymeric article positioned on the shaping element with a substantially uniform light field, thereby allowing the article to be heated and molded at a desired treatment site in a body lumen.
摘要:
A method and apparatus for molding polymeric structures in vivo is disclosed. The structures comprise polymers that may be heated to their molding temperature by absorption of visible or near-visible wavelengths of light. By providing a light source that produces radiation of the wavelength absorbed by the polymeric material, the material may be selectively heated and shaped in vivo without a corresponding heating of adjacent tissues or fluids to unacceptable levels. The apparatus comprises a catheter having a shaping element positioned near its distal end. An emitter provided with light from at least one optical fiber is positioned within the shaping element. The emitter serves to provide a moldable polymeric article positioned on the shaping element with a substantially uniform light field, thereby allowing the article to be heated and molded at a desired treatment site in a body lumen.
摘要:
A method and apparatus for molding polymeric structures in vivo is disclosed. The structures comprise polymers that may be heated to their molding temperature by absorption of visible or near-visible wavelengths of light. By providing a light source that produces radiation of the wavelength absorbed by the polymeric material, the material may be selectively heated and shaped in vivo without a corresponding heating of adjacent tissues or fluids to unacceptable levels. The apparatus comprises a catheter having a shaping element positioned near its distal end. An emitter provided with light from at least one optical fiber is positioned within the shaping element. The emitter serves to provide a moldable polymeric article positioned on the shaping element with a substantially uniform light field, thereby allowing the article to be heated and molded at a desired treatment site in a body lumen.
摘要:
Processes are described herein for preparing medical devices and other articles having a low-fouling surface on a substrate comprising a polymeric surface. The polymeric surface material may possess a range of polymeric backbones and substituents while providing the articles with a highly efficient, biocompatible, and non-fouling surface. The processes involve treating the substrate to reduce the concentration of chemical species on the surface of or in the substrate without altering the bulk physical properties of the device or article, and thereafter forming a grafted polymer layer on the treated substrate surface.
摘要:
Processes are described herein for preparing medical devices and other articles having a low-fouling surface on a substrate comprising a polymeric surface. The polymeric surface material may possess a range of polymeric backbones and substituents while providing the articles with a highly efficient, biocompatible, and non-fouling surface. The processes involve treating the substrate to reduce the concentration of chemical species on the surface of or in the substrate without altering the bulk physical properties of the device or article, and thereafter forming a grafted polymer layer on the treated substrate surface.