摘要:
Provided is a novel flow control system that includes multiple modifier columns for positioning across a waterway. Bottom ends of the columns are attached to a bottom track extension, for example, at the bottom of the waterway. The columns are sufficiently light so that the buoyancy force pushes their top ends towards the surface forming a “curtain-like” structure that provides resistance to the water flow. Spacing between the columns and other characteristics may be used to adjust this resistance. The columns may be repositioned along the track to change the spacing and/or to form an open pass. The columns are sufficiently robust and may swivel with respect to their bottom support such that their upper portions contact passing vessels. The system may be used to control flow through energy extracting devices or be a part of flood control systems.
摘要:
A fundamental departure from previous methods of extracting energy from moving fluids—increasing by several orders of magnitude the quantities of energy extracted over currently used methods and systems: A part of a moving mass of fluid, or large aggregate thereof, are permitted to flow into encapsulation; the entire flowing mass is then decelerated to zero, or nearly zero velocity, with the entire original level of energy of the moving fluids transferred to the encapsulating/decelerating means or directly to energy users.
摘要:
One example embodiment includes a system for extracting kinetic energy from moving fluid masses. The system includes an encapsulator, where a fluid enters the encapsulator. The system also includes decelerator, where the decelerator reduces the velocity of the encapsulated fluid to near zero velocity transferring the kinetic energy originally in the incoming fluid to the decelerator.
摘要:
An infinitely variable transmission, in which the driver and driven members can exchange their roles—with the driver becoming the driven, and vice versa. The initially chosen driver carries within it a number of movable parts, which the driving forces bring into contact with the driven member, in a manner designed to produce a momentary lock between the driver and driven members, at the point of the torque transfer between them. In one embodiment the driven member—which can be a flat disc—is clamped between two oppositely placed drivers. Infinite variability is achieved by controllably relocating the fixed diameter drivers to smaller or larger diameter points on the so clamped disc. The output can be harvested from the rotation of said driven disc directly. Or one or more driver members like these which are used to rotate said disc, can be brought into contact with different locations on said disc, and become driven by it. In such a case a number of different speeds, or torque levels, can be taken simultaneously as outputs from a single rpm/torque input. In embodiments with a single driver of convex shape input, the preferred driven member is a cone with a concave curvature, to allow for a larger contact zone than two opposing convex parts could provide. Either the flat clamped disc version, or the cone versions, can be stacked vertically or horizontally, with cones nested within each other, to multiply gear ratios and or torques as wished.