摘要:
A method and system for characterizing, detecting, and predicting or forecasting multiple target events from a past history of these events includes compressing temporal data streams into self-organizing map (SOM) clusters, and determining trajectories of the temporal streams via the clusters to predict the multiple target events. The system includes an evolutionary multi-objective optimization (EMO) module for processing the temporal data streams, which are obtained from a plurality of heterogeneous domains; a SOM module for characterizing the temporal data streams into self-organizing map clusters; and a target event prediction (TEP) module for generating prediction models of the map clusters. The SOM module employs a vector quantization method that places a set of vectors on a low-dimensional grid in an ordered fashion. The prediction models each include trajectories of the temporal data streams, and the system predicts the multiple target events using the trajectories.
摘要:
A method and system for characterizing, detecting, and predicting or forecasting multiple target events from a past history of these events includes compressing temporal data streams into self-organizing map (SOM) clusters, and determining trajectories of the temporal streams via the clusters to predict the multiple target events. The system includes an evolutionary multi-objective optimization (EMO) module for processing the temporal data streams, which are obtained from a plurality of heterogeneous domains; a SOM module for characterizing the temporal data streams into self-organizing map clusters; and a target event prediction (TEP) module for generating prediction models of the map clusters. The SOM module employs a vector quantization method that places a set of vectors on a low-dimensional grid in an ordered fashion. The prediction models each include trajectories of the temporal data streams, and the system predicts the multiple target events using the trajectories.
摘要:
A system and method for determining events in a system or process, such as predicting fault events. The method includes providing data from the process, pre-processing data and converting the data to one or more temporal spike trains having spike amplitudes and a spike train length. The spike trains are provided to a dynamical neural network operating as a liquid state machine that includes a plurality of neurons that analyze the spike trains. The dynamical neural network is trained by known data to identify events in the spike train, where the dynamical neural network then analyzes new data to identify events. Signals from the dynamical neural network are then provided to a readout network that decodes the states and predicts the future events.
摘要:
Disclosed herein are a system and method for trend prediction of signals in a time series using a Markov model. The method includes receiving a plurality of data series and input parameters, where the input parameters include a time step parameter, preprocessing the plurality of data series according to the input parameters, to form binned and classified data series, and processing the binned and classified data series. The processing includes initializing a Markov model for trend prediction, and training the Markov model for trend prediction of the binned and classified data series to form a trained Markov model. The method further includes deploying the trained Markov model for trend prediction, including outputting trend predictions. The method develops an architecture for the Markov model from the data series and the input parameters, and disposes the Markov model, having the architecture, for trend prediction.
摘要:
Anomaly prediction of battery parasitic load includes processing input data related to a state of charge for a battery and a durational factor utilizing a machine learning algorithm and generating a predicted start-up state of charge. Warnings are issued if the predicted start-up state of charge drops below a threshold level within an operational time.
摘要:
A method for characterizing, detecting and predicting an event of interest, a target event, based on temporal patterns useful for predicting a probable occurrence of the target event is disclosed. Measurable events and their features are defined and quantized into event classes. Temporal series of the event classes are analyzed, and preliminary prediction rules established by analyzing temporal patterns of the event classes that precede an occurrence of the target event using a sliding time window. The quality of the preliminary prediction rules is evaluated and parameters thereof are optimized by using a defined fitness function, thereby defining finalized prediction rules. The finalized prediction rules are then made available for application on temporal series of the event classes to forecast a probable occurrence of the target event.
摘要:
Anomaly prediction of battery parasitic load includes processing input data related to a state of charge for a battery and a durational factor utilizing a machine learning algorithm and generating a predicted start-up state of charge. Warnings are issued if the predicted start-up state of charge drops below a threshold level within an operational time.
摘要:
A system, method, and apparatus for signal characterization, estimation, and prediction comprising an integrated search algorithm that cooperatively optimizes several data mining sub-tasks, the integrated search algorithm including a machine learning model, and the method comprising processing the data for data embedding, data embedding the processed data for searching for patterns, extracting time and frequency patterns, and training the model to represent learned patterns for signal characterization, estimation, and prediction.
摘要:
A method for training a robot to execute a robotic task in a work environment includes moving the robot across its configuration space through multiple states of the task and recording motor schema describing a sequence of behavior of the robot. Sensory data describing performance and state values of the robot is recorded while moving the robot. The method includes detecting perceptual features of objects located in the environment, assigning virtual deictic markers to the detected perceptual features, and using the assigned markers and the recorded motor schema to subsequently control the robot in an automated execution of another robotic task. Markers may be combined to produce a generalized marker. A system includes the robot, a sensor array for detecting the performance and state values, a perceptual sensor for imaging objects in the environment, and an electronic control unit that executes the present method.
摘要:
A method is provided for determining when to provide a refueling notification to a driver of a vehicle. A refueling behavior is determined for refueling the vehicle. The refueling behavior is associated at least in part to an amount of fuel customarily remaining in the vehicle when the vehicle is customarily refueled. A remaining amount of fuel in the vehicle and a fuel economy of the vehicle are determined. A distance the vehicle will travel to a next driving destination is estimated. An amount of fuel that will be used to travel to the next driving destination is estimated based on the estimated distance the vehicle will travel to the next driving destination and the fuel economy. A determination is made whether the amount of fuel that will be remaining in the vehicle after the vehicle travels to the next driving destination is less than the amount of a fuel customarily remaining in the vehicle when the vehicle is refueled. A refueling notification is actuated to a driver of a vehicle in response to the determination that the amount of fuel that will be remaining in the vehicle after the vehicle travels to the next driving destination will be less than the amount of fuel customarily remaining in the vehicle when the vehicle is refueled.