Abstract:
A thoracic support for a seat back of a seat is provided. The thoracic support structure is pivotally attached to the seat back and pivots between a first position and a second position. In the second position the support structure supports at least a portion of the thoracic region of the user's spine. An actuator disposed between a support surface and the support structure pivots the support structure from the first position to the second position upon actuation.
Abstract:
A vehicle seat is provided, in at least one embodiment, comprising a seatback comprising a cushion having a first hardness, and a pneumatic thoracic support structure positioned adjacent the cushion. In at least one embodiment, the pneumatic thoracic support structure comprises a first bladder selectively inflatable to provide a first area having a second hardness higher than the first hardness, with the first area being disposed along a thoracic region of a user's spine when a user is seated in the seat to provide support to at least a portion of the thoracic region of the user's spine.
Abstract:
A seat assembly is provided with a translatable seat cushion, a pivotal seat back, and a head restraint adapted to be mounted for translation adjacent the seat back. An actuator is operably connected to at least one of the seat cushion and the seat back for adjustment of a plurality of settings of the seat assembly. A controller is in electrical communication with the actuator and is configured to receive input indicative of occupant anthropometry data, current physical condition and/or activity level, compare the input with predetermined data ranges, and adjust at least one of the plurality of settings of the actuator to a predetermined setting based on the predetermined range. A computer-program product is programmed for automatically adjusting a seat assembly. A method for adjusting a seat assembly receives anthropometry data for an occupant.
Abstract:
A thoracic support for a seatback of a seat is provided. The thoracic support has a center portion extending in an upright direction and adapted to be positioned adjacent the seatback to align adjacent a thoracic region a user's spine and having a first hardness. A pair of side portions are each disposed on opposing lateral sides of the center portion. The side portions have a second hardness less than the first hardness of the center portion. The pair of side portions and the center portion to define a smooth forward support surface.
Abstract:
A vehicle seat assembly having a seat bottom that includes first and second side frame members and a front cushion module. The front cushion module has a support member and a cushion. The support member has first and second ends that are disposed proximate the front end of the first and second side frame members, respectively. The cushion receives and is supported by the support member and has a front end. The vehicle seat assembly may have an actuator cooperable with the support member for tilting the front end of the cushion relative to the frame members.
Abstract:
A thoracic support for a seatback of a seat is provided. The thoracic support includes a center portion extending in an upright direction and adapted to be positioned adjacent the seatback to align adjacent a thoracic region a user's spine. The center portion is formed of a first foam material having a first hardness. A pair of side portions each disposed adjacent to and are connected with the center portion. The side portions are formed of a second foam material having a second hardness. The first hardness is greater than the second hardness so that the center portion provides support to at least a portion of the thoracic region of the user's spine.
Abstract:
A seatback assembly is provided having a thoracic support structure. The thoracic support structure includes a center portion extending in an upright direction and is adapted to be positioned adjacent the seatback to align adjacent a thoracic region a user's spine. The center portion is formed of a first foam material having a first hardness. A pair of side portions are disposed adjacent to and connected with the center portion. The side portions are formed of a second foam material having a second hardness. The first hardness is greater than the second hardness for providing support to the user's spine. An adjustment mechanism is connected to the thoracic support structure for positioning the support structure along the seatback so that the center portion provides support to at least a portion of the thoracic region of the user's spine.
Abstract:
A vehicle seat is provided, in at least one embodiment, comprising a seatback comprising a cushion having a first hardness, and a pneumatic thoracic support structure positioned adjacent the cushion. In at least one embodiment, the pneumatic thoracic support structure comprises a first bladder selectively inflatable to provide a first area having a second hardness higher than the first hardness, with the first area being disposed along a thoracic region of a user's spine when a user is seated in the seat to provide support to at least a portion of the thoracic region of the user's spine.
Abstract:
A thoracic support for a seatback of a seat is provided. The thoracic support includes a center portion extending in an upright direction and adapted to be positioned adjacent the seatback to align adjacent a thoracic region a user's spine. The center portion is formed of a first foam material having a first hardness. A pair of side portions each disposed adjacent to and are connected with the center portion. The side portions are formed of a second foam material having a second hardness. The first hardness is greater than the second hardness so that the center portion provides support to at least a portion of the thoracic region of the user's spine.
Abstract:
A thoracic support for a seat back of a seat is provided. The thoracic support structure is pivotally attached to the seat back and pivots between a first position and a second position. In the second position the support structure supports at least a portion of the thoracic region of the user's spine. An actuator disposed between a support surface and the support structure pivots the support structure from the first position to the second position upon actuation.