摘要:
An artifact rejector for repetitive physiologic-event-signal data generated from electronically-controlled physiologic-event-measuring equipment includes a physiologic-event-signal averager in communication with such physiologic-event-measuring equipment. The artifact rejector is constructed to generate and store repetitive averaged physiologic-event-signal data based upon a substantially stable time relationship between corresponding physiologic-event-signal data and heart-beat-related-signal data. The repetitive averaged physiologic-event-signal data includes less noise than the repetitive physiologic-event-signal data. The artifact rejector generates and continuously updates an averaged-data template by storing such repetitive averaged physiologic-event-signal data for a preselected number of measured physiologic events. The artifact rejector also includes a physiologic-event-noise estimator and a physiologic-event-noise monitor in communication with such physiologic-event-measuring equipment, and capable of instructing the monitor to adjust the measurement cycle based upon estimated, monitored noise. The averager preferably includes a sharp roll-off, low pass filter and examples include a fourth-order Bessel filter, two cascaded, identical second-order Bessel filters, an elliptic filter, a Tchetschebyscheff filter, or finite impulse response filters. The heart-beat-related signal is preferably an ECG signal. A method of artifact rejection includes generating and storing repetitive averaged physiologic-event-signal data based upon a substantially stable time relationship between corresponding physiologic-event-signal data and heart-beat-related-signal data, with the repetitive averaged physiologic-event-signal data including less noise than the repetitive physiologic-event-signal data.
摘要:
A microprocessor-controlled, oscillometric method for determining a patient's systolic, diastolic, and mean arterial pressure, practiced in a system comprising an inflatable, occluding cuff, a pump and a valve coupled to the cuff, and monitoring apparatus coupled to the cuff adapted to measure cuff pressure and recurring blood-pressure pulsations occurring in the cuff that are caused by each heart contraction occurring in a measurement cycle. Cuff pressure is raised to a level above the patinet's systolic pressure, and progressively reduced in a stepwise fashion to an ending cuff pressure. A fixed number of pulsations are measured and processed at a first and second cuff-pressure step, and a generally lesser number of oscillations are measured and processed at a third and subsequent cuff-pressure steps. The method includes a first artifact rejection technique used to check for false data relative to the formation of each blood-pressure pulsation. Further, the method includes calculating, for each blood-pressure pulsation, the impulse of a force that is exerted upon the patinet's blood from, and during, each heart contraction that occurs in the measurement cycle. An impulse value is stored relative to each pulsation. A second artifact rejection technique is used, beginning at the second cuff-pressure step, to generate a prediction curve for predicting a next, expected-to-be-stored pulsation impulse value for a next, lower cuff-pressure step. The second artifact rejection technique is also used to repeatedly smooth the prediction curve based on the difference between a pulsation's calculated impulse value and its respective predicted impulse value. A final, smoothed curve is generated reflecting a final impulse value for each cuff-pressure step. From the final curve, the desired blood pressure parameters are derived and displayed in the form of arabic numerals by means of an LCD readout.
摘要:
For use in performing non-invasive blood-pressure measurement (NIBP), an artifact rejection method for predicting expected data values from acquired data, and for adjusting previously acquired data based on the relationship of actually measured data values to their corresponding predicted values. The method is practiced in a system comprising an inflatable, occluding cuff, a pump and a valve coupled to the cuff, and monitoring apparatus coupled to the cuff adapted to measure cuff pressure and recurring blood-pressure pulsations occurring in the cuff that are caused by each heart contraction occurring in a measurement cycle. Cuff pressure is raised to a level above the patient's systolic pressure, and progressively reduced in a stepwise fashion to an ending cuff pressure. A fixed number of pulsations are measured and processed at a first and second cuff-pressure step, and a generally lesser number of pulsations are measured and processed at a third and subsequent cuff-pressure steps. The method includes, at the second cuff-pressure step, generating a prediction curve for predicting a next, expected-to-be-stored pulsation data value for a next, lower cuff-pressure step. The method also includes repeatedly smoothing the prediction curve based on the difference between a pulsations's calculated data value and its respective predicted data value. A final, smoothed curve is generated reflecting a final pulsation data value for each cuff-pressure step. From the final curve, the desired blood pressure parameters are derived and displayed in the form of arabic numerals by means of an LCD read-out.