摘要:
Methods and devices for improving the machine-to-machine and temporal (e.g., inter and intra-machine) and database consistency of coronary calcium scoring by applying a filtering algorithm that sharpens and/or smoothes the image so as to return a filtered image having a spatial resolution of a certain reference value.
摘要:
An inherently de-coupled sandwiched solenoidal array coil (SSAC) is disclosed for use in receiving nuclear magnetic resonance (NMR) radio frequency (RF) signals in both horizontal and vertical-field magnetic resonance imaging (MRI) systems. In its most basic configuration, the SSAC comprises two coaxial RF receive coils. The first coil of the array has two solenoidal (or loop) sections that are separated from one another along a common axis. The two sections are electrically connected in series but the conductors in each section are wound in opposite directions so that a current through the coil sets up a magnetic field of opposite polarity in each section. The second coil of the SSAC is disposed (“sandwiched”) between the two separated solenoidal sections of the first coil in a region where the combined opposing magnetic fields cancel to become a null. Due to the winding arrangement and geometrical symmetry, the receive coils of the array become electromagnetically “de-coupled” from one another while still maintaining their sensitivity toward receiving NMR signals. The multiple coil array arrangement also allows for selecting between a larger or smaller field-of-view (FOV) to avoid image fold-over problems without time penalty in image data acquisition. Alternative embodiments are disclosed which include unequal constituent coil diameters, unequal constituent coil windings, non-coaxial coil configurations, a three-coil quadrature detection (QD) SSAC arrangement, multiple SSAC arrangements, and optimized SSAC configurations for breast imaging in both horizontal and vertical-field MRI systems.
摘要:
An inherently de-coupled sandwiched solenoidal array coil (SSAC) is disclosed for use in receiving nuclear magnetic resonance (NMR) radio frequency (RF) signals in both horizontal and vertical-field magnetic resonance imaging (MRI) systems. In its most basic configuration, the SSAC comprises two coaxial RF receive coils. The first coil of the array has two solenoidal (or loop) sections that are separated from one another along a common axis. The two sections are electrically connected in series but the conductors in each section are wound in opposite directions so that a current through the coil sets up a magnetic field of opposite polarity in each section. The second coil of the SSAC is disposed (“sandwiched”) between the two separated solenoidal sections of the first coil in a region where the combined opposing magnetic fields cancel to become a null. Due to the winding arrangement and geometrical symmetry, the receive coils of the array become electromagnetically “de-coupled” from one another while still maintaining their sensitivity toward receiving NMR signals. The multiple coil array arrangement also allows for selecting between a larger or smaller field-of-view (FOV) to avoid image fold-over problems without time penalty in image data acquisition. Alternative embodiments are disclosed which include unequal constituent coil diameters, unequal constituent coil windings, non-coaxial coil configurations, a three-coil quadrature detection (QD) SSAC arrangement, multiple SSAC arrangements, and optimized SSAC configurations for breast imaging in both horizontal and vertical-field MRI systems.
摘要:
Switched magnetic fields (in addition to the usual pulsed magnetic gradient fields) aiding and/or opposing the usual constant static magnetic field B.sub.o are utilized so as to increase the signal-to-noise ratio for given available imaging sequence times and/or to provide special imaging effects.
摘要:
A high T.sub.c superconductive electromagnet winding is advantageously employed as part of an MRI magnet structure having a pair of magnetically permeable poles opposingly disposed about the patient imaging volume. The magnetic circuit is otherwise completed by a magnetically permeable yoke structure having plural open apertures for easy access to the patient imaging volume. Still further advantage can be had by asymmetrically disposing a single superconductive electromagnet winding with respect to the patient image volume thereby eliminating the need for more than one cryostat. When high T.sub.c superconductive electromagnetic windings are utilized, a non-conductive composite cryostat may also be used to further reduce spurious eddy current fields. When an asymmetric single high T.sub.c superconductive electromagnet coil is utilized, an asymmetric electromagnet shim winding may also be employed so as to further increase the magnetic field homogeneity within what is now an asymmetrically located patient imaging volume within the air gap of the magnet structure.
摘要:
Electromagnet coil driving circuitry in a magnetic resonance imaging system is modified to include a flux-driven closed-loop real-time feedback control. The result is more accurate and efficient control of the net actual gradient flux generated by the coil even in the presence of magnetic circuit materials exhibiting hysteresis effects and/or electrical conductors giving rise to eddy current effects. Such driver control can be used to simultaneously correct the magnetic flux changes induced by environmental, ambient or other outside disturbances affecting the net magnetic field within a patient imaging volume of a magnetic resonance imaging system.
摘要:
Methods and systems for combining a plurality of radiographic images. Software can be used to provide various stitching and blending methods to join first and second images into a composite, larger image.
摘要:
An RF coil for an MRI system is self-supported by the formed conductor used to make the coil itself. A high-strength, high-conductive, stiff, internally self-supporting Cu-ag alloy may be used.
摘要:
An MRI RF coil utilizes a helical conductor having a plurality of turns and a non-uniform pitch between turns along at least a portion of the axial length of the coil. The non-uniform pitch is disposed so as to accommodate interventional procedures and/or interventional apparatus (e.g., stereotaxic frames) when used on a human patient in conjunction with magnetic resonance imaging. The non-uniform pitch portion of the coil may comprise a simple gap, an opening formed by deformation or angular disposition of some or all of the coil turns and/or by utilizing fringe field effects of the coil to accomplish at least some of the magnetic resonance imaging procedure.