摘要:
One aspect of the present invention relates to quinine-based and quinidine-based catalysts. In certain embodiments, the quinine-based and quinidine-based catalysts contain a hydroxy group at the 6′ position. In certain embodiments, the quinine-based and quinidine-based catalysts contain an O-aryl group or an O-aroyl group at the C9 position. In certain embodiments, the quinine-based and quinidine-based catalysts contain an optionally substituted O-diazene group or an optionally substituted O-benzoyl group at the C9 position. In certain embodiments, the quinine-based and quinidine-based catalysts contain a thiourea at the C9 position. In certain embodiments, the quinine-based and quinidine-based catalysts contain an NH(═S)NH-aryl group at the C9 position. Another aspect of the present invention relates to a method of preparing a chiral, non-racemic compound from a prochiral electron-deficient alkene or prochiral imine, comprising the step of: reacting a prochiral alkene or imine with a nucleophile in the presence of a catalyst; thereby producing a chiral, non-racemic compound; wherein said catalyst is a derivatized quinine or quinidine. In certain embodiments, the nucleophile is a malonate or β-ketoester. In certain embodiments the nucleophile is an alkyl or aryl or aralkyl 2-cyano-2-alkylacetate. In certain embodiments the nucleophile is an alkyl or aryl or aralkyl 2-cyano-2-alkylacetate.Another aspect of the present invention relates to a method of kinetic resolution, comprising the step of: reacting a racemic aldehyde or racemic ketone with a nucleophile in the presence of a derivatized quinine or quinidine, thereby producing a non-racemic, chiral compound. In certain embodiments, the kinetic resolution is dynamic.
摘要:
One aspect of the present invention relates to quinine-based and quinidine-based catalysts. In certain embodiments, the quinine-based and quinidine-based catalysts contain a hydroxy group at the 6′ position. In certain embodiments, the quinine-based and quinidine-based catalysts contain an O-aryl group or an O-aroyl group at the C9 position. In certain embodiments, the quinine-based and quinidine-based catalysts contain an optionally substituted O-diazene group or an optionally substituted O-benzoyl group at the C9 position. In certain embodiments, the quinine-based and quinidine-based catalysts contain a thiourea at the C9 position. In certain embodiments, the quinine-based and quinidine-based catalysts contain an NH(═S)NH-aryl group at the C9 position. Another aspect of the present invention relates to a method of preparing a chiral, non-racemic compound from a prochiral electron-deficient alkene or prochiral imine, comprising the step of: reacting a prochiral alkene or imine with a nucleophile in the presence of a catalyst; thereby producing a chiral, non-racemic compound; wherein said catalyst is a derivatized quinine or quinidine. In certain embodiments, the nucleophile is a malonate or β-ketoester. In certain embodiments the nucleophile is an alkyl or aryl or aralkyl 2-cyano-2-alkylacetate. In certain embodiments the nucleophile is an alkyl or aryl or aralkyl 2-cyano-2-alkylacetate. Another aspect of the present invention relates to a method of kinetic resolution, comprising the step of: reacting a racemic aldehyde or racemic ketone with a nucleophile in the presence of a derivatized quinine or quinidine, thereby producing a non-racemic, chiral compound. In certain embodiments, the kinetic resolution is dynamic.
摘要:
In certain embodiments, the present invention relates to methods for asymmetric Friedel-Crafts alkylation catalyzed by bifunctional cinchona alkaloids. In certain embodiments, the catalyst is a 6′-OH cinchona alkaloid. In certain embodiments, the electrophile is an α-ketoester or aldehyde. In certain embodiments, the nucleophile is an aromatic heterocycle. In certain embodiments, the nucleophile is an aromatic N-containing heterocycle. In certain embodiments, the nucleophile is an indole. In certain embodiments, the methods of the invention are relatively insensitive to concentration, temperature, air and moisture.
摘要:
One aspect of the present invention relates to quinine-based and quinidine-based catalysts. Another aspect of the invention relates to a method of preparing a derivatized quinine-based or quinidine-based catalyst comprising 1) reacting quinine or quinidine with base and a compound that has a suitable leaving group, and 2) converting the ring methoxy group to a hydroxy group. Another aspect of the present invention relates to a method of preparing a chiral, non-racemic compound from a prochiral electron-deficient alkene or azo compound or prochiral aldehyde or prochiral ketone, comprising the step of: reacting a prochiral electron-deficient alkene or azo compound or prochiral aldehyde or prochiral ketone with a nucleophile in the presence of a catalyst; thereby producing a chiral, non-racemic compound; wherein said catalyst is a derivatized quinine or quinidine. Another aspect of the present invention relates to a method of kinetic resolution, comprising the step of: reacting racemic chiral alkene with a nucleophile in the presence of a derivatized quinine or quinidine.
摘要:
One aspect of the present invention relates to asymmetric catalytic nitroaldol (Henry) reactions with ketones as the electrophilic component. In one embodiment, the present invention relates to asymmetric nitroaldol reactions with α-keto esters catalyzed by a new C6′-OH cinchona alkaloid catalyst. In certain embodiments, this reaction is operationally simple and affords high enantioselectivity as well as good to excellent yield for an exceptionally broad range of α-keto esters.
摘要:
One aspect of the present invention relates to quinine-based and quinidine-based catalysts. Another aspect of the invention relates to a method of preparing a derivatized quinine-based or quinidine-based catalyst comprising 1) reacting quinine or quinidine with base and a compound that has a suitable leaving group, and 2) converting the ring methoxy group to a hydroxy group. Another aspect of the present invention relates to a method of preparing a chiral, non-racemic compound from a prochiral electron-deficient alkene or azo compound or prochiral aldehyde or prochiral ketone, comprising the step of: reacting a prochiral electron-deficient alkene or azo compound or prochiral aldehyde or prochiral ketone with a nucleophile in the presence of a catalyst; thereby producing a chiral, non-racemic compound; wherein said catalyst is a derivatized quinine or quinidine. Another aspect of the present invention relates to a method of kinetic resolution, comprising the step of: reacting racemic chiral alkene with a nucleophile in the presence of a derivatized quinine or quinidine.
摘要:
One aspect of the present invention relates to asymmetric catalytic nitroaldol (Henry) reactions with ketones as the electrophilic component. In one embodiment, the present invention relates to asymmetric nitroaldol reactions with α-keto esters catalyzed by a new C6′-OH cinchona alkaloid catalyst. In certain embodiments, this reaction is operationally simple and affords high enantioselectivity as well as good to excellent yield for an exceptionally broad range of α-keto esters.
摘要:
In certain embodiments, the present invention relates to methods for asymmetric Friedel-Crafts alkylation catalyzed by bifunctional cinchona alkaloids. In certain embodiments, the catalyst is a 6′-OH cinchona alkaloid. In certain embodiments, the electrophile is an α-ketoester or aldehyde. In certain embodiments, the nucleophile is an aromatic heterocycle. In certain embodiments, the nucleophile is an aromatic N-containing heterocycle. In certain embodiments, the nucleophile is an indole. In certain embodiments, the methods of the invention are relatively insensitive to concentration, temperature, air and moisture.
摘要:
A novel system integrates speech recognition and semantic classification, so that acoustic scores in a speech recognizer that accepts spoken utterances may be taken into account when training both language models and semantic classification models. For example, a joint association score may be defined that is indicative of a correspondence of a semantic class and a word sequence for an acoustic signal. The joint association score may incorporate parameters such as weighting parameters for signal-to-class modeling of the acoustic signal, language model parameters and scores, and acoustic model parameters and scores. The parameters may be revised to raise the joint association score of a target word sequence with a target semantic class relative to the joint association score of a competitor word sequence with the target semantic class. The parameters may be designed so that the semantic classification errors in the training data are minimized.
摘要:
A novel system integrates speech recognition and semantic classification, so that acoustic scores in a speech recognizer that accepts spoken utterances may be taken into account when training both language models and semantic classification models. For example, a joint association score may be defined that is indicative of a correspondence of a semantic class and a word sequence for an acoustic signal. The joint association score may incorporate parameters such as weighting parameters for signal-to-class modeling of the acoustic signal, language model parameters and scores, and acoustic model parameters and scores. The parameters may be revised to raise the joint association score of a target word sequence with a target semantic class relative to the joint association score of a competitor word sequence with the target semantic class. The parameters may be designed so that the semantic classification errors in the training data are minimized.