Abstract:
An electrolyte solvent for a cathode active material composed of lithium oxo acid salt. The solvent is used for a lithium ion secondary battery using the lithium oxo acid salt as a cathode material. The electrolyte solvent includes an ammonium ion which includes two or more alkoxyalkyl groups.
Abstract:
An electrolyte solvent for a cathode active material composed of lithium oxo acid salt. The solvent is used for a lithium ion secondary battery using the lithium oxo acid salt as a cathode material. The electrolyte solvent includes an ammonium ion which includes two or more alkoxyalkyl groups.
Abstract:
Disclosed is a tin-carbon mesoporous composite for a lithium ion battery negative electrode material, and a method for preparing the same. Using a mesoporous molecular sieve as a template, the precursors of tin and carbon are caused to fill the mesopores of the template and carbonized under nitrogen to obtain a composite of stannic oxide and carbon, and the stannic oxide is encapsulated by the carbon; and then the tin-carbon mesoporous composite for lithium ion battery negative electrode material is obtained by hydrothermal treatment, carbonization, etching, and high temperature carbothermic reduction. The tin-carbon mesoporous composite for lithium ion battery negative electrode material synthesized in the present invention has a reversible capacity of 550 mAh·g−1, after 100 cycles at a current density of 500 mA·g−1.
Abstract:
In an embodiment, a method for manufacturing a thin layer chromatography (“TLC”) plate is disclosed. The method includes forming a layer of elongated nanostructures (e.g., carbon nanotubes), and at least partially coating the elongated nanostructures with a coating. The coating includes a stationary phase and/or precursor of a stationary phase for use in chromatography. The stationary phase may be functionalized with hydroxyl groups by exposure to acidified water vapor or immersion in a concentrated acid bath (e.g., HCl and methanol). At least a portion of the elongated nanostructures may be removed after being coated. Embodiments for TLC plates and related methods are also disclosed.
Abstract:
A method for preparing a platelet aggregation inhibitor, a blood coagulation inhibitor, and a pharmaceutical composition or a food for preventing or treating thrombotic diseases, includes applying notoginsenoside Fc.
Abstract:
Provided is a fusion protein, which comprises human fibroblast growth factor 21 and glucagon-like-peptide-1 or its analogs. Also provided is the medicament composition comprising the fusion protein, which can be used for treating or preventing obesity, diabetes, hyperglycemia and hyperlipidemia etc.
Abstract:
Disclosed embodiments include a system and a method for determining intracranial pressure (ICP) of a subject that comprises: (a) applying transcranial Doppler (TCD) to determine the middle cerebral artery (MCA) velocity of the subject and estimating changes in the ICP continuously based on a functional mapping that relates arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) to ICP, resulting in an estimated ICP trend; (b) generating a flash visual evoked potential (FVEP) on the subject, processing a detected FVEP signal and obtaining an estimated ICP; and (c) combining the estimated ICP trend from TCD CBFV and ABP with the estimated ICP obtained by signal processing of the detected FVEP signal to periodically correct the trend and obtain a non-invasive measure of ICP.
Abstract:
Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path.An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.
Abstract:
A method for coating a diamond where an initiation site is provided on the diamond surface or initiation of a living polymerization on the site and the initiation site is reacted with a monomer having a site the reacts with and bonds to the initiation site to form an chemically attached chain with a new initiation site on the chain for further reaction with a monomer. An article with a coating upon a diamond surface, the coating the reaction product of a living polymerization reaction with initiation site on the diamond surface.