Abstract:
A de-interlace method is performed by the following process. First, edge directions of pixels surrounding a target pixel to be interpolated in an interpolating line are received, and a search range selected from the edge directions of the surrounding pixels is determined by checking a consistency of the edge directions of the surrounding pixels. Sequentially, an edge direction of the target pixel is determined based on the search range, and a pixel value of the target pixel is generated based on the edge direction of the target pixel for interpolation.
Abstract:
An apparatus includes an extractor, a first subtractor, a second subtractor, a third subtractor, an offset generator and an adder. The extractor receives the color pixel and to provides a first, a second, and a third image value, wherein the first, the second, and the third image values are associated with the brightness of the color pixel. The first subtractor calculates a first offset between the first image value and a first expected image value. The second subtractor calculates a first difference between the first and the second image values. The third subtractor calculates a second difference between the first and the third image values. The offset generator defines a linear relation based on the first offset and the first image value, and generates a second and a third offset. The adder receives the second offset, the third offset, the second image value and the third image value to generate a second and a third expected image value.
Abstract:
An apparatus includes an extractor, a first subtractor, a second subtractor, a third subtractor, an offset generator and an adder. The extractor receives the color pixel and to provides a first, a second, and a third image value, wherein the first, the second, and the third image values are associated with the brightness of the color pixel. The first subtractor calculates a first offset between the first image value and a first expected image value. The second subtractor calculates a first difference between the first and the second image values. The third subtractor calculates a second difference between the first and the third image values. The offset generator defines a linear relation based on the first offset and the first image value, and generates a second and a third offset. The adder receives the second offset, the third offset, the second image value and the third image value to generate a second and a third expected image value.
Abstract:
This invention provides a calibration method and a corresponding apparatus for optical imaging lens system with double optical paths. The apparatus for optical imaging lens system with double optical paths comprises a first optical subsystem, a second optical subsystem and a calibration module. The calibration module receives a first image data from the first optical subsystem and a second image data from the second optical subsystem. The calibration module calibrates the first image data according to at least one selected optical parameter of the second optical subsystem, and calibrates the second image data according to at least one selected optical parameter of the first optical subsystem. The selected optical parameters of the first optical subsystem and the second optical subsystem are different.
Abstract:
This invention provides a calibration method and a corresponding apparatus for optical imaging lens system with double optical paths. The apparatus for optical imaging lens system with double optical paths comprises a first optical subsystem, a second optical subsystem and a calibration module. The calibration module receives a first image data from the first optical subsystem and a second image data from the second optical subsystem. The calibration module calibrates the first image data according to at least one selected optical parameter of the second optical subsystem, and calibrates the second image data according to at least one selected optical parameter of the first optical subsystem. The selected optical parameters of the first optical subsystem and the second optical subsystem are different.
Abstract:
The present invention provides an optical imaging lens system with double optical paths, comprising: the first optical subsystem; the second optical subsystem having a back focal length equal to that of the first optical subsystem; an optical path selector selectively having a light reflection state or a light passing state; the first reflector set disposed at an image side of the first optical subsystem for directing light from the first optical subsystem to the optical path selector; and the second reflector set disposed at an image side of the second optical subsystem for directing light from the second optical subsystem to the optical path selector. In the present invention, the optical path selector can be controlled to have the light reflection state or the light passing state selectively, so that an image coming from the first optical subsystem or from the second optical subsystem is captured.
Abstract:
This invention provides a stereo display device for displaying left and right frames alternately with an adjusted disparity in between, comprising: a distance measurement module configured to measure the distance between the stereo display device and a viewer; and an adjustment module configured to receive left and right frames with an original disparity in between, adjust the original disparity between left and right frames according to the distance between the stereo display device and the viewer, and output left and right frames having an adjusted disparity in between.
Abstract:
The present invention provides an optical imaging lens system with double optical paths, comprising: the first optical subsystem; the second optical subsystem having a back focal length equal to that of the first optical subsystem; an optical path selector selectively having a light reflection state or a light passing state; the first reflector set disposed at an image side of the first optical subsystem for directing light from the first optical subsystem to the optical path selector; and the second reflector set disposed at an image side of the second optical subsystem for directing light from the second optical subsystem to the optical path selector. In the present invention, the optical path selector can be controlled to have the light reflection state or the light passing state selectively, so that an image coming from the first optical subsystem or from the second optical subsystem is captured.