Abstract:
A method of controlling flight of a missile includes using gyroscopes, such as pitch rate gyroscopes, to sense when a factor based on the angular rate of change of the missile exceeds a threshold value. One the threshold value is exceeded, a decision may be made to use one or more compensation thrusters to reduce the angular rate of change. The use of the compensation thrusters may correct residual angular velocities from a pitch over maneuver used to put the missile on an intended course. In addition, the compensation thrusters may be used to compensate for errors in missile heading induced after the pitch over maneuver, such as induced by misalignment of thrust provided by a main rocket motor of the missile. Multiple compensation thrusters may be used to compensate for angular changes in the pitch and yaw directions.
Abstract:
There is disclosed a system and method for detecting targets. A transmitter may transmit a first inverse transform signal, the first inverse transform signal derived from a reference image of a first reference target at a first aspect angle. A receiver may receive a return signal reflected from a scene. A detector may determine, based on the return signal, if an object similar to the first target at the first aspect angle is detected within the scene.
Abstract:
A solid-fuel pellet thrust and control actuation system (PT-CAS) provides command authority for maneuvering flight vehicles over subsonic and supersonic speeds and within the atmosphere and exo-atmosphere. The PT-CAS includes a chamber or solid-fuel pellets that are ignited to expel gas through a throat. The expelled gas is directed at supersonic vehicle speeds in atmosphere to a cavity between an aero control surface and the airframe to pressurize the cavity and deploy the surface or at subsonic speeds in atmosphere or any speed in exo-atmosphere allowed to flow out a through-hole in the surface where the throat and through-hole provide a virtual converging/diverging nozzle to produce a supersonic divert thrust. A pellet and control actuation system (P-CAS) Without the through-hole provides command authority at supersonic speeds in atmosphere. A restrictor mechanism controls the bleed of pressurized gas from the cavity to the external environment to achieve a deployment time objective for either the PT-CAS or P-CAS.