Abstract:
Embodiments include active protection systems and methods for an aerial platform. An onboard system includes radar modules, detects aerial vehicles within a threat range of the aerial platform, and determines if any of the aerial vehicles are an aerial threat. The onboard system also determines an intercept vector to the aerial threat, communicates the intercept vector to an eject vehicle, and causes the eject vehicle to be ejected from the aerial platform to intercept the aerial threat. The eject vehicle includes alignment thrusters to rotate a longitudinal axis of the eject vehicle to substantially align with the intercept vector, a rocket motor to accelerate the eject vehicle along an intercept vector, divert thrusters to divert the eject vehicle in a direction substantially perpendicular to the intercept vector, and attitude control thrusters to make adjustments to the attitude of the eject vehicle.
Abstract:
A reaction control system (RCS) is provided for use with an air vehicle having a nose portion and a center of gravity aft of the nose portion. The RCS includes a belt element configured for selectively securing the RCS to the nose portion, and also includes a plurality of micro-rocket modules affixed to the belt element, each micro-rocket module being configured for being selectively activated to provide corresponding control moments to the air vehicle when secured to the nose portion thereof. A corresponding air vehicle, and a method for modifying an air vehicle, are also provided.
Abstract:
Embodiments include active protection systems and methods for an aerial platform. An onboard system includes one or more radar modules, detects aerial vehicles within a threat range of the aerial platform, and determines if any of the plurality of aerial vehicles are an aerial threat. The onboard system also determines an intercept vector to the aerial threat, communicates the intercept vector to an eject vehicle, and causes the eject vehicle to be ejected from the aerial platform to intercept the aerial threat. The eject vehicle includes a rocket motor to accelerate the eject vehicle along an intercept vector, alignment thrusters to rotate a longitudinal axis of the eject vehicle to substantially align with the intercept vector, and divert thrusters to divert the eject vehicle in a direction substantially perpendicular to the intercept vector. The eject vehicle activates at least one of the alignment thrusters responsive to the intercept vector.
Abstract:
A detonation thrust-producing device includes an explosive located in a recess in an external surface of a body. Detonation of the explosive expels material out of the recess, providing thrust to the body in an opposite direction. A mass, such as a metal disk, may be placed blocking or covering the external opening. The body may be a part of a vehicle, such as an airborne projectile. The thrust-producing device may include multiple detonation motors arrayed around the body, capable of being individually or multiply detonated. Such thrust-producing devices may be used for attitude adjustment, steering, or other control of the flight of the projectile or other air vehicle. The detonation thrust-producing devices have the advantage of a faster-response time than propellant-based devices, and do not need the nozzles that are used with many propellant-based devices.
Abstract:
The invention concerns the field of devices for improving the piloting of projectiles More specifically, the object of the invention is a piloting device for a missile or a projectile, for example, of small caliber, especially on the order of 40 mm, which has a lateral main surface with a nose at the level of one of its extremities, whereby said device includes at least one cavity consisting of a combustion chamber and filled, at least partially, by an explosive powder, and means of initiation of this explosive powder, and thereby the explosive powder includes nanothermites or gas-generating nanothermites.
Abstract:
A modular artillery projectile and method of engaging a target. A modular artillery projectile may include a payload module, a guidance module coupled to the payload module and a rear module coupled to the guidance module. The payload module may be selected from a plurality of interchangeable payload modules containing different payloads. The guidance module may include a transverse propulsion system to propel the modular artillery projectile transversely to a longitudinal axis of the modular artillery projectile, a global positioning system receiver, and a control system to control the transverse propulsion system responsive to the global positioning system receiver to guide the modular artillery projectile to a predetermined target position.
Abstract:
A matrix of explosive cells can include plural explosive cells formed in an array in a common substrate. Each cell can be formed as a recess filled with explosive material. An ignition device has an addressable ignition source for each cell. This matrix can be used in combination with a projectile guidance system. The projectile guidance system includes an antenna, a transceiver and a control processor. A method of guiding a projectile can include firing a projectile at a target, tracking the projectile and the target, determining a desired change in a flight path of the projectile, transmitting guidance commands to effect the desired change in the projectile's flight path to the projectile, receiving the guidance commands onboard the projectile and selectively igniting an explosive cell in a matrix of addressable explosive cells contained in a common substrate using the guidance commands.
Abstract:
A ring portion including: a ring body; and one or more actuators formed therein for providing thrust to a projectile and configured for fastening to a shell of an airborne device to form a portion of the shell. The airborne device can be a projectile.
Abstract:
A projectile including: a shell; and a movable exterior surface of the shell, the movable exterior surface having one or more actuators for providing thrust to move the movable exterior surface from a first position to a second position.
Abstract:
A reliable and inexpensive attitude control system uses a plurality of pitch-over thrusters to perform rapid and precise attitude maneuvers for a flight vehicle. The pitch-over thrusters create rotational moments that directly pitch and yaw the flight vehicle. The use of very simple thrusters and control techniques provides for a reliable and cost effective solution. The ability to perform overlapping pitch and yaw maneuvers with single-shot fixed-impulse thrusters provides for high-speed maneuverability.