摘要:
A method and apparatus for determining the type of a blood sample are provided wherein a turbidity spectrum of the blood sample is collected over a predetermined wavelength range, from which is calculated an extinction spectrum. This extinction spectrum is then compared with a set of control spectra collected from control blood samples having known blood types, from which the type of the blood sample can be determined. A further method is provided for for detecting the presence of a substance in a bodily fluid sample, the substance having a size in the range of generally 0.5 to 20 .mu.m. Exemplary substances that could be of interest to detect include, but are not limited to, hemoglobin, bilirubin, red blood cell antigens, microorganisms, and viruses. This embodiment includes the additional step of deconvoluting the extinction spectrum to obtain a particle size distribution for comparison with a database of control samples.
摘要:
An approach to detecting microorganisms in blood uses the changes of hemoglobin and the physical and chemical properties of blood to detect the presence of microorganisms in blood. Spectrophotometric measurements are taken several wavelengths across the UV-Vis-NIR portion of the electromagnetic spectrum, and a deconvolution is performed quantitatively to interpret distinct spectral characteristics of blood enabling the detection of microorganisms.
摘要:
A system and method for the automatic sampling and dilution of homogeneous particle dispersions is developed that uses a multistep parallel dilution network system for the sample and diluent and includes variable dilution capabilities. The sample and diluent are combined and allowed to mix uniformly over a predetermined conduit length. Resampling from the first dilution step and recombining with another diluent line results in a second dilution step. The number of steps determines the dilution range; the manipulation of the sample and diluent flow rates provides a variable dilution ratio at each dilution step. An exemplary embodiment reduces the concentration of a latex sample for analysis with uv-vis spectrometry. In another embodiment, the emulsion polymerization of styrene is followed in real time with turbidity measurements taken on diluted samples.
摘要:
There is provided a method and device for remote sampling, preparation and optical interrogation of a sample using light scattering and light absorption methods. The portable device is a filtration-based device that removes interfering background particle material from the sample matrix by segregating or filtering the chosen analyte from the sample solution or matrix while allowing the interfering background particles to be pumped out of the device. The segregated analyte is then suspended in a diluent for analysis. The device is capable of calculating an initial concentration of the analyte, as well as diluting the analyte such that reliable optical measurements can be made. Suitable analytes include cells, microorganisms, bioparticles, pathogens and diseases. Sample matrixes include biological fluids such as blood and urine, as well as environmental samples including waste water.
摘要:
An approach to detecting microorganisms in blood uses the changes of hemoglobin and the physical and chemical properties of blood to detect the presence of microorganisms in blood. Spectrophotometric measurements are taken several wavelengths across the UV-Vis-NIR portion of the electromagnetic spectrum, and a deconvolution is performed quantitatively to interpret distinct spectral characteristics of blood enabling the detection of microorganisms.
摘要:
The present invention provides a method and apparatus for the detection of an infectious disease or disorder in a fluid, such as a mammalian blood sample, the detection of a specific protein in a urine sample, or the detection of a particle in a plasma. The identification of the particles of interest is enable by taking a transmission spectrum of a test sample in at least a portion of the ultraviolet, visible, near-infrared portion of the spectrum and comparing the spectrum with a standard sample spectrum. From the comparison it is then determined whether the fluid from the test sample contains an particle of interest, and an identity of the particle of interest is determined. Spectroscopic and multiwavelength turbidimetry techniques provide a rapid, inexpensive, and convenient means for diagnosis. The comparison and determination steps may be performed visually or by spectral deconvolution.