Abstract:
Methods and systems for a silicon-based optical phase modulator with high modal overlap are disclosed and may include, in an optical modulator having a rib waveguide in which a cross-shaped depletion region separates four alternately doped sections: receiving an optical signal at one end of the optical modulator, modulating the received optical signal by applying a modulating voltage, and communicating a modulated optical signal out of an opposite end of the modulator. The modulator may be in a silicon photonically-enabled integrated circuit which may be in a complementary-metal oxide semiconductor (CMOS) die. An optical mode may be centered on the cross-shaped depletion region. The four alternately doped sections may include: a shallow depth p-region, a shallow depth n-region, a deep p-region, and a deep n-region. The shallow depth p-region may be electrically coupled to the deep p-region periodically along the length of the modulator.
Abstract:
Methods and systems for selectively illuminated integrated photodetectors with configured launching and adaptive junction profile for bandwidth improvement may include a photonic chip comprising an input waveguide and a photodiode. The photodiode comprises an absorbing region with a p-doped region on a first side of the absorbing region and an n-doped region on a second side of the absorbing region. An optical signal is received in the absorbing region via the input waveguide, which is offset to one side of a center axis of the absorbing region; an electrical signal is generated based on the received optical signal. The first side of the absorbing region may be p-doped. P-doped and n-doped regions may alternate on the first and second sides of the absorbing region along the length of the photodiode. The absorbing region may comprise germanium, silicon, silicon/germanium, or similar material that absorbs light of a desired wavelength.
Abstract:
Methods and systems for a silicon-based optical phase modulator with high modal overlap may include, in an optical modulator having a rib waveguide in which a cross-shaped depletion region separates four alternately doped sections: receiving an optical signal at one end of the optical modulator, modulating the received optical signal by applying a modulating voltage, and communicating a modulated optical signal out of an opposite end of the modulator. The modulator may be in a silicon photonically-enabled integrated circuit which may be in a complementary-metal oxide semiconductor (CMOS) die. An optical mode may be centered on the cross-shaped depletion region. The four alternately doped sections may include: a shallow depth p-region, a shallow depth n-region, a deep p-region, and a deep n-region. The shallow depth p-region may be electrically coupled to the deep p-region periodically along the length of the modulator.
Abstract:
Methods and systems for selectively illuminated integrated photodetectors with configured launching and adaptive junction profile for bandwidth improvement may include a photonic chip comprising an input waveguide and a photodiode. The photodiode comprises an absorbing region with a p-doped region on a first side of the absorbing region and an n-doped region on a second side of the absorbing region. An optical signal is received in the absorbing region via the input waveguide, which is offset to one side of a center axis of the absorbing region; an electrical signal is generated based on the received optical signal. The first side of the absorbing region may be p-doped. P-doped and n-doped regions may alternate on the first and second sides of the absorbing region along the length of the photodiode. The absorbing region may comprise germanium, silicon, silicon/germanium, or similar material that absorbs light of a desired wavelength.
Abstract:
Methods and systems for a low-voltage integrated silicon high-speed modulator may include an optical modulator comprising first and second optical waveguides and two optical phase shifters, where each of the two optical phase shifters may comprise a p-n junction with a horizontal section and a vertical section and an optical signal is communicated to the first optical waveguide. A portion of the optical signal may then be coupled to the second optical waveguide. A phase of at least one optical signal in the waveguides may be modulated utilizing the optical phase shifters. A portion of the phase modulated optical signals may be coupled between the two waveguides, thereby generating two output signals from the modulator. A modulating signal may be applied to the phase shifters which may include a reverse bias.
Abstract:
Methods and systems for germanium-on-silicon photodetectors without germanium layer contacts are disclosed and may include, in a semiconductor die having a photodetector, where the photodetector includes an n-type silicon layer, a germanium layer, a p-type silicon layer, and a metal contact on each of the n-type silicon layer and the p-type silicon layer: receiving an optical signal, absorbing the optical signal in the germanium layer, generating an electrical signal from the absorbed optical signal, and communicating the electrical signal out of the photodetector via the n-type silicon layer and the p-type silicon layer. The photodetector may include a horizontal or vertical junction double heterostructure where the germanium layer is above the n-type and p-type silicon layers. An intrinsically-doped silicon layer may be below the germanium layer between the n-type silicon layer and the p-type silicon layer. A top portion of the germanium layer may be p-doped.
Abstract:
Systems and methods for a focused field avalanche photodiode (APD) may include an absorbing layer, an anode, a cathode, an N-doped layer, a P-doped layer, and a multiplication region between the N-doped layer and the P-doped layer. Oxide interfaces are located at top and bottom surfaces of the anode, cathode, N-doped layer, P-doped layer, and multiplication region. The APD may absorb an optical signal in the absorbing layer to generate carriers, and direct them to a center of the cathode using doping profiles in the N-doped layer and the P-doped layer that vary in a direction perpendicular to the top and bottom surfaces. The doping profiles in the N-doped layer and the P-doped layer may have a peak concentration midway between the oxide interfaces, or the N-doped layer may have a peak concentration midway between the oxide interfaces while the P-doped layer may have a minimum concentration there.
Abstract:
Methods and systems for a silicon-based optical phase modulator with high modal overlap are disclosed and may include, in an optical modulator having a rib waveguide in which a cross-shaped depletion region separates four alternately doped sections: receiving an optical signal at one end of the optical modulator, modulating the received optical signal by applying a modulating voltage, and communicating a modulated optical signal out of an opposite end of the modulator. The modulator may be in a silicon photonically-enabled integrated circuit which may be in a complementary-metal oxide semiconductor (CMOS) die. An optical mode may be centered on the cross-shaped depletion region. The four alternately doped sections may include: a shallow depth p-region, a shallow depth n-region, a deep p-region, and a deep n-region. The shallow depth p-region may be electrically coupled to the deep p-region periodically along the length of the modulator.
Abstract:
Methods and systems for a silicon-based optical phase modulator with high modal overlap are disclosed and may include, in an optical modulator having a rib waveguide in which a cross-shaped depletion region separates four alternately doped sections: receiving an optical signal at one end of the optical modulator, modulating the received optical signal by applying a modulating voltage, and communicating a modulated optical signal out of an opposite end of the modulator. The modulator may be in a silicon photonically-enabled integrated circuit which may be in a complementary-metal oxide semiconductor (CMOS) die. An optical mode may be centered on the cross-shaped depletion region. The four alternately doped sections may include: a shallow depth p-region, a shallow depth n-region, a deep p-region, and a deep n-region. The shallow depth p-region may be electrically coupled to the deep p-region periodically along the length of the modulator.
Abstract:
Methods and systems for germanium-on-silicon photodetectors without germanium layer contacts are disclosed and may include, in a semiconductor die having a photodetector, where the photodetector includes an n-type silicon layer, a germanium layer, a p-type silicon layer, and a metal contact on each of the n-type silicon layer and the p-type silicon layer: receiving an optical signal, absorbing the optical signal in the germanium layer, generating an electrical signal from the absorbed optical signal, and communicating the electrical signal out of the photodetector via the n-type silicon layer and the p-type silicon layer. The photodetector may include a horizontal or vertical junction double heterostructure where the germanium layer is above the n-type and p-type silicon layers. An intrinsically-doped silicon layer may be below the germanium layer between the n-type silicon layer and the p-type silicon layer. A top portion of the germanium layer may be p-doped.