Edge sealant application for optical devices

    公开(公告)号:US11513372B2

    公开(公告)日:2022-11-29

    申请号:US16438663

    申请日:2019-06-12

    Abstract: Techniques are described for applying an edge sealant to the edge of a multi-layer optical device. In particular, embodiments provide an apparatus that performs a precision measurement of the perimeter of an eyepiece, applying the edge sealant (e.g., polymer) based on the precision-measured perimeter, and subsequently cures the edge sealant, using ultraviolet (UV) light that is directed at the edge sealant. The curing process may be performed within a short time following the application of the edge sealant, to ensure that any wicking of the edge sealant between the layers of the eyepiece is controlled to be no greater than a particular depth tolerance. In some examples, the edge sealant is applied to the optical device prevent, or at least reduce, the leakage of light from the optical device, and also to ensure and maintain the structure of the multi-layer optical device.

    LIGHT LEAKAGE DETECTION IN EDGE SEALANTS OF OPTICAL DEVICES

    公开(公告)号:US20200225114A1

    公开(公告)日:2020-07-16

    申请号:US16836579

    申请日:2020-03-31

    Abstract: Techniques are described for inspecting optical devices, such as eyepieces, to determine whether they exhibit light leakage through an edge sealant that has been applied to the device. Embodiments provide an inspection apparatus that can be employed to detect the leakage of light through an edge sealant of an optical device, where the edge sealant is applied to prevent, or at least reduce, the leakage of light from the optical device. Light from a light source is projected into the optical device. The light can travel along one or more wave guides within the device, until reaching an edge of the device. Light that is able to leak through an edge sealant can be reflected, using mirror(s) in the apparatus, and detected by a camera. Image(s) captured by the camera can be analyzed to determine the performance of the optical device with respect to edge leakage.

    EDGE SEALANT APPLICATION FOR OPTICAL DEVICES

    公开(公告)号:US20230083319A1

    公开(公告)日:2023-03-16

    申请号:US17984818

    申请日:2022-11-10

    Abstract: Techniques are described for applying an edge sealant to the edge of a multi-layer optical device. In particular, embodiments provide an apparatus that performs a precision measurement of the perimeter of an eyepiece, applying the edge sealant (e.g., polymer) based on the precision-measured perimeter, and subsequently cures the edge sealant, using ultraviolet (UV) light that is directed at the edge sealant. The curing process may be performed within a short time following the application of the edge sealant, to ensure that any wicking of the edge sealant between the layers of the eyepiece is controlled to be no greater than a particular depth tolerance. In some examples, the edge sealant is applied to the optical device prevent, or at least reduce, the leakage of light from the optical device, and also to ensure and maintain the structure of the multi-layer optical device.

    Fiducial design
    5.
    发明授权

    公开(公告)号:US11079522B1

    公开(公告)日:2021-08-03

    申请号:US15993408

    申请日:2018-05-30

    Abstract: Methods and apparatuses related to fiducial designs for fiducial markers on glass substrates, or other transparent or translucent substrates, are disclosed. Example fiducial designs can facilitate visual recognition by enhancing edge detection in visual perception. In example fiducial designs, optical features on glass substrates can re-direct light so as to present a bright image region. Such optical features can include surface relief patterns formed in a coating on the surface of glass substrates. An exemplary method for manufacturing the fiducial markers can involve transfers of a fiducial design across a master mold or plate, a submaster mold or plate, and a target glass substrate. A fiducial marker can facilitate the use of the substrate in a variety of applications, including machine vision systems that facilitate automated performance of manufacturing processes on input working material.

    Light leakage detection in edge sealants of optical devices

    公开(公告)号:US10942086B2

    公开(公告)日:2021-03-09

    申请号:US16836579

    申请日:2020-03-31

    Abstract: Techniques are described for inspecting optical devices, such as eyepieces, to determine whether they exhibit light leakage through an edge sealant that has been applied to the device. Embodiments provide an inspection apparatus that can be employed to detect the leakage of light through an edge sealant of an optical device, where the edge sealant is applied to prevent, or at least reduce, the leakage of light from the optical device. Light from a light source is projected into the optical device. The light can travel along one or more wave guides within the device, until reaching an edge of the device. Light that is able to leak through an edge sealant can be reflected, using mirror(s) in the apparatus, and detected by a camera. Image(s) captured by the camera can be analyzed to determine the performance of the optical device with respect to edge leakage.

    LIGHT LEAKAGE DETECTION IN EDGE SEALANTS OF OPTICAL DEVICES

    公开(公告)号:US20190383697A1

    公开(公告)日:2019-12-19

    申请号:US16438683

    申请日:2019-06-12

    Abstract: Techniques are described for inspecting optical devices, such as eyepieces, to determine whether they exhibit light leakage through an edge sealant that has been applied to the device. Embodiments provide an inspection apparatus that can be employed to detect the leakage of light through an edge sealant of an optical device, where the edge sealant is applied to prevent, or at least reduce, the leakage of light from the optical device. Light from a light source is projected into the optical device. The light can travel along one or more wave guides within the device, until reaching an edge of the device. Light that is able to leak through an edge sealant can be reflected, using mirror(s) in the apparatus, and detected by a camera. Image(s) captured by the camera can be analyzed to determine the performance of the optical device with respect to edge leakage.

    Fiducial design
    8.
    发明授权

    公开(公告)号:US11703755B2

    公开(公告)日:2023-07-18

    申请号:US17364498

    申请日:2021-06-30

    Abstract: Methods and apparatuses related to fiducial designs for fiducial markers on glass substrates, or other transparent or translucent substrates, are disclosed. Example fiducial designs can facilitate visual recognition by enhancing edge detection in visual perception. In example fiducial designs, optical features on glass substrates can re-direct light so as to present a bright image region. Such optical features can include surface relief patterns formed in a coating on the surface of glass substrates. An exemplary method for manufacturing the fiducial markers can involve transfers of a fiducial design across a master mold or plate, a submaster mold or plate, and a target glass substrate. A fiducial marker can facilitate the use of the substrate in a variety of applications, including machine vision systems that facilitate automated performance of manufacturing processes on input working material.

    Edge sealant application for optical devices

    公开(公告)号:US12099258B2

    公开(公告)日:2024-09-24

    申请号:US17984818

    申请日:2022-11-10

    Abstract: Techniques are described for applying an edge sealant to the edge of a multi-layer optical device. In particular, embodiments provide an apparatus that performs a precision measurement of the perimeter of an eyepiece, applying the edge sealant (e.g., polymer) based on the precision-measured perimeter, and subsequently cures the edge sealant, using ultraviolet (UV) light that is directed at the edge sealant. The curing process may be performed within a short time following the application of the edge sealant, to ensure that any wicking of the edge sealant between the layers of the eyepiece is controlled to be no greater than a particular depth tolerance. In some examples, the edge sealant is applied to the optical device prevent, or at least reduce, the leakage of light from the optical device, and also to ensure and maintain the structure of the multi-layer optical device.

Patent Agency Ranking