Abstract:
A vehicular imaging system includes a camera disposed behind a windshield of a vehicle and viewing through a portion of the windshield. Image data captured by the camera is provided to a control. The control receives, via a communication bus of the vehicle, at least one selected from the group consisting of (i) vehicle pitch information relating to pitch of the vehicle, (ii) vehicle yaw information relating to yaw of the vehicle and (iii) vehicle steering information relating to steering of the vehicle. The system automatically corrects for misalignment of the camera. Image data captured by the camera is processed at the control for a lane departure warning system of the vehicle and for at least one selected from the group consisting of (i) an automatic headlamp control system of the vehicle, (ii) a collision avoidance system of the vehicle and (iii) an adaptive front lighting system of the vehicle.
Abstract:
A method for determining blockage of a vehicular camera includes providing a camera and mounting the camera at a vehicle so as to view exterior of the vehicle. The control determines at least one selected from the group consisting of (i) that the imaging sensor is totally blocked by determining that the count of bright photosensor pixels of the camera's imaging sensor remains below a threshold, and (ii) that the imaging sensor is partially blocked by determining continuity of intensity variations in different regions of the imaging sensor. The control, responsive to determination of either total blockage or partial blockage of the imaging sensor of the camera, adapts image processing by the image processor of frames of image data captured by the camera to accommodate (i) the determined total blockage of the imaging sensor of the camera or (ii) the determined partial blockage of the imaging sensor of the camera.
Abstract:
A vehicular imaging system includes an imaging device having a single imaging sensor capturing image data within a field of view. A control within the vehicle includes an image processor and receives image data captured by the single imaging sensor and receives vehicle data via a communication bus of the vehicle. Responsive at least in part to image processing of captured image data, the control detects converging road features along the road the vehicle is travelling and determines a point of intersection where the converging road features would converge. Responsive at least in part to image processing of captured image data, the control automatically corrects for misalignment of the imaging device mounted at the vehicle.
Abstract:
A vehicular imaging system includes an imaging device having a single imaging sensor capturing image data within a field of view. A control within the vehicle includes an image processor and receives image data captured by the single imaging sensor and receives vehicle data via a communication bus of the vehicle. Responsive at least in part to image processing of captured image data, the control detects converging road features along the road the vehicle is travelling and determines a point of intersection where the converging road features would converge. Responsive at least in part to image processing of captured image data, the control automatically corrects for misalignment of the imaging device mounted at the vehicle.
Abstract:
A vehicular imaging system comprises a single imaging sensor having a plurality of photosensor elements. The imaging sensor captures image data of a scene exterior of the vehicle within its field of view. Image data captured by the imaging sensor is provided to a control. The control also receives via a communication bus at least one of vehicle pitch information, vehicle yaw information and vehicle steering information. The control detects two substantially straight and converging road features along the road the vehicle is travelling and determines a point of intersection where they would converge using, at least in part, the received vehicle information and the control automatically corrects for misalignment of the imaging sensor mounted at the vehicle.
Abstract:
A vehicular imaging system includes a camera disposed behind a windshield of a vehicle and viewing through a portion of the windshield. Image data captured by the camera is provided to a control. The control receives, via a communication bus of the vehicle, at least one selected from the group consisting of (i) vehicle pitch information relating to pitch of the vehicle, (ii) vehicle yaw information relating to yaw of the vehicle and (iii) vehicle steering information relating to steering of the vehicle. The system automatically corrects for misalignment of the camera. Image data captured by the camera is processed at the control for a lane departure warning system of the vehicle and for at least one selected from the group consisting of (i) an automatic headlamp control system of the vehicle, (ii) a collision avoidance system of the vehicle and (iii) an adaptive front lighting system of the vehicle.
Abstract:
A vehicular imaging system includes an imaging device having a single imaging sensor capturing image data within a field of view. A control within the vehicle includes an image processor and receives image data captured by the single imaging sensor and receives vehicle data via a communication bus of the vehicle. Responsive at least in part to image processing of captured image data, the control detects converging road features along the road the vehicle is travelling and determines a point of intersection where the converging road features would converge. Responsive at least in part to image processing of captured image data, the control automatically corrects for misalignment of the imaging device mounted at the vehicle.
Abstract:
A vehicular imaging system includes an imaging device having a single imaging sensor capturing image data within a field of view. A control within the vehicle includes an image processor and receives image data captured by the single imaging sensor and receives vehicle data via a communication bus of the vehicle. Responsive at least in part to image processing of captured image data, the control detects converging road features along the road the vehicle is travelling and determines a point of intersection where the converging road features would converge. Responsive at least in part to image processing of captured image data, the control automatically corrects for misalignment of the imaging device mounted at the vehicle.
Abstract:
A vehicular imaging system comprises a single imaging sensor having a plurality of photosensor elements. The imaging sensor captures image data of a scene exterior of the vehicle within its field of view. Image data captured by the imaging sensor is provided to a control. The control also receives via a communication bus at least one of vehicle pitch information, vehicle yaw information and vehicle steering information. The control detects two substantially straight and converging road features along the road the vehicle is travelling and determines a point of intersection where they would converge using, at least in part, the received vehicle information and the control automatically corrects for misalignment of the imaging sensor mounted at the vehicle.