Abstract:
A method of sub-channel independent network allocation vector (NAV) management by a wireless station (STA) in a wideband wireless communications system is proposed. In the wideband system having multiple sub-bands, each NAV for a corresponding sub-band is independently managed. The protection duration for each NAV is independent for each sub-band and the threshold or update rule for NAV modification is also independent for each sub-band. The threshold or update rule for NAV modification may also be different when the NAV is generated or propagated by an OBSS STA. Furthermore, early termination of NAV is allowed if the NAV is set by an OBSS STA only.
Abstract:
Methods are provided for concurrent communications among multiple wireless communications devices. In one novel aspect, the wireless station transmits a wideband signal to a plurality of wireless communications devices using downlink MIMO and/or OFDMA. The wireless station receives a plurality of responding frames from the plurality of wireless communications devices concurrently using OFDMA. In one embodiment, the wireless station transmits a MU indication bit and MU bandwidth assignment information in the downlink MIMO and/or OFDMA frames. In another novel aspect, the uplink responding frames from multiple wireless communications devices are sent on a corresponding narrow concurrently over more than one transmission instance. AP polling or SIFS only is used between two transmission instances. When the concurrent responding frames occupies less than a bandwidth of an available uplink OFDMA bandwidth, the unoccupied bandwidth is either left empty or occupied by one or more duplicated responding frames.
Abstract:
Methods and apparatus are provided for burst OFDMA support MU-MIMO in the WLAN network. In one novel aspect, pluralities of user channels are configured for a downlink wideband channel, wherein each user channel is associated with a user group selecting from a SU-SISO, or a SU-MIMO or a MU-MIMO. In one embodiment, the SIG1 and SIG2 signaling fields are independent for each user channel. In another embodiment, the SIG1 fields are duplicates for all user channels carrying common information. The SIG2 fields for each user group are different from each other carrying user group specific information. In another novel aspect, an uplink OFDMA frames contains ACK packets from multiple STAs concurrently using an uplink wideband channel. In one embodiment, one ACK packet is sent for a MU-MIMO user group. In another embodiment, the uplink ACK packet assignment is based on indications in the downlink PHY SIG field.
Abstract:
A method of performing contention-based uplink OFDMA transmission is proposed in accordance with one novel aspect. A wireless communications station (an AP) reserves both dedicated resource and contention resource for uplink OFDMA operation for a list of communications devices (STAs). For contention-based random access, the AP does not need to collect traffic requests from the STAs. The AP only needs to make simple resource arrangement. The AP only needs to specify the allocated resource for random access and the uplink OFDMA operation duration and timing for each uplink OFDMA packet. Each STA having traffic request will contend the resource based on a random access probability scheme.
Abstract:
Methods and apparatus are provided for burst OFDMA support MU-MIMO in the WLAN network. In one novel aspect, pluralities of user channels are configured for a downlink wideband channel, wherein each user channel is associated with a user group selecting from a SU-SISO, or a SU-MIMO or a MU-MIMO. In one embodiment, the SIG1 and SIG2 signaling fields are independent for each user channel. In another embodiment, the SIG1 fields are duplicates for all user channels carrying common information. The SIG2 fields for each user group are different from each other carrying user group specific information. In another novel aspect, an uplink OFDMA frames contains ACK packets from multiple STAs concurrently using an uplink wideband channel. In one embodiment, one ACK packet is sent for a MU-MIMO user group. In another embodiment, the uplink ACK packet assignment is based on indications in the downlink PHY SIG field.
Abstract:
A method of performing contention-based uplink OFDMA transmission is proposed in accordance with one novel aspect. A wireless communications station (an AP) reserves both dedicated resource and contention resource for uplink OFDMA operation for a list of communications devices (STAs). For contention-based random access, the AP does not need to collect traffic requests from the STAs. The AP only needs to make simple resource arrangement. The AP only needs to specify the allocated resource for random access and the uplink OFDMA operation duration and timing for each uplink OFDMA packet. Each STA having traffic request will contend the resource based on a random access probability scheme.
Abstract:
Methods and apparatus are provided for clear channel assessment in the Wifi network. In one novel aspect, different clear channel assessment (CCA) threshold value is set for intra-BSS and inter-BSS frames during the counting down process. A CCA procedure senses the radio channel and determines if the radio channel is busy or idle during the backoff period by comparing the signal level value of detected fames with the CCA threshold value. The counting down will be suspended if the radio channel determined to be busy. If the detected frame is inter-BSS frame, the CCA threshold value is raised. If the signal level of the detected frames is lower than the inter-BSS CCA threshold for inter-BSS fames, the radio channel is considered idle. The counting down process is resumed.
Abstract:
A method of STA-initiated uplink (UL) aggregation is proposed in a wireless communication system. Under the STA-initiated UL aggregation, an STA can gain access to the medium through contention and after winning the TXOP, it passes the TXOP ownership to its AP to allow it to trigger UL MU transmission. Thus, the AP has increased chance of utilizing the medium while maintains fairness to both legacy APs and STAs. In addition, once AP takes over ownership of the TXOP, if it detects idle secondary channels, it can enable UL aggregation over the idle secondary channels, thereby fully utilizing the entire system bandwidth.
Abstract:
A wireless device and an associated wireless device are proposed. The wireless device includes a first receiving circuit, a second receiving circuit and a detector. The first receiving circuit is arranged to receive signals in a first band. The second receiving circuit is arranged to selectively receive signals in the first band or signal reception in a second band according to a first control signal, wherein the second band is different from the first band. The detector is arranged to detect existence of a transmission signal in the second band to set the first control signal.
Abstract:
A method of performing OFDMA transmission with aggregation from multiple access categories to improve channel utilization of a wireless channel is proposed. In one novel aspect, data from multiple access categories are allowed to be aggregated and transmitted in the same packet to utilize idle time efficiently. In downlink OFDMA, AP can send different AC data to different STAs so that AP can better arrange the transmission resource block. If the resource for one STA has long enough idle time, AP can aggregate more data that is different to the current AC for the same STA to better utilize the resource. In UL OFDMA, different STAs can send different AC data to AP. If the resource for one STA has long enough idle time, the STA can aggregate more data that is different to the current AC to better utilize the resource.