Abstract:
A motor control device includes a circuit board having a control circuit controlling electric power to be supplied to a motor, a base fixedly supporting the circuit board, a flexible printed circuit supplying electric power to the motor, a pin terminal disposed on the circuit board, being electrically connected with the control circuit, a dummy pin terminal disposed on the circuit board, being electrically free from the control circuit, a wiring pattern land disposed on the FPC, being electrically connected with the pin terminal, and a dummy wiring pattern land disposed on the FPC, being connected with the dummy pin terminal.
Abstract:
There is provided a control device for a stepping motor, configured to apply an excitation current to multiple coils to rotate a rotor. The control device includes a drive unit configured to apply a drive voltage to the coils, and a control unit configured to control the drive voltage applied by the drive unit, wherein the control unit includes a stop control unit configured to perform, during a hold period of a stop period of the stepping motor, a stop control which gradually decreases a magnitude of the excitation current flowing in the coils such that the rotor moves to a predetermined stop position, and wherein the stop control unit is configured to perform the stop control such that a variation amount of the excitation current per unit time becomes a predetermined threshold value for the stop period or less.
Abstract:
A motor includes a rotor, a stator, an excitation coil, and a holder disposed on an outer side of the stator to hold a flexible printed circuit board supplying drive power, wherein the holder includes a main body mounting the flexible printed circuit board thereon, a bridging portion disposed along one of long sides on a first face a of the main body to form a first opening allowing the flexible printed circuit board to be inserted therethrough, and an engaging portion disposed along each of short sides on a second face of the main body to removably fit with a part of a terminal block of the excitation coil.
Abstract:
There is provided a motor control device for an actuator having a motor, including a measuring unit configured to measure a temperature of the actuator or a temperature corresponding to the temperature of the actuator, a determining unit configured to determine whether the temperature measured by the measuring unit is lower than a preset temperature, and a boost control unit configured to perform boost control at activation of the motor to increase drive power supplied to the motor if the determining unit determines that the temperature measured by the measuring unit is lower than the preset temperature. The boost control unit is configured to perform the boost control such that, only within a boost period after starting activation of the motor, drive power larger than that supplied to the motor during steady driving after the boost period is supplied to the motor.
Abstract:
There is provided a motor control device configured to control an energization state of a coil of each phase for driving a stepping motor having multiple phase coils. The motor control device includes a measuring unit configured to measure a back electromotive voltage induced at a coil of a phase for which energization is stopped, among the multiple phase coils, an acquiring unit configured to acquire temperature information on temperature of the stepping motor or on temperature corresponding to the temperature of the stepping motor, and a detecting unit configured to detect whether the stepping motor is out of step or not based on a result obtained by the measuring unit and the temperature information acquired by the acquiring unit.
Abstract:
A motor drive controller includes: a control circuit that controls an AC current flowing in a motor; a frequency modulation unit that frequency-modulates a speed of the motor when the motor is driven at a predetermined speed; and a current effective value controller that decreases an effective value of the AC current flowing in the motor as the speed of the motor modulated by the frequency modulation unit becomes closer to a resonant frequency of the motor.
Abstract:
There is provided a motor control device for controlling a stepping motor having at least two coils. The motor control device includes a controller applies a pulse voltage being subjected to pulse width modulation to each of the coils and provides a stop period to a target coil being subjected to switching of a direction of the coil current, during which the application of the pulse voltage to the target coil is temporarily stopped. The controller also performs a control to set on-duty of the pulse voltage applied to all of the coils except the target coil to be either 100% or 0% during the stop period. An out-of step of the stepping motor is detected when a back electromotive voltage induced in the target coil during the stop period satisfies a predetermined out-of-step determination criterion.
Abstract:
There is provided a motor control device controlling an energizing state of a coil of each phase for driving a stepping motor having multiple phase coils. The motor control device includes a detecting unit configured to detect whether the stepping motor is out of step, and a reverse rotating unit configured, when the detecting unit detects that the stepping motor is out of step, to rotate the stepping motor in a second rotation direction reverse to a first rotation direction, which is a rotation direction of the stepping motor before detecting out-of-step, by a number of steps with which a stress received by the stepping motor is alleviated, before the stepping motor spontaneously rotates in the second direction.