Abstract:
A motor control device includes a circuit board having a control circuit controlling electric power to be supplied to a motor, a base fixedly supporting the circuit board, a flexible printed circuit supplying electric power to the motor, a pin terminal disposed on the circuit board, being electrically connected with the control circuit, a dummy pin terminal disposed on the circuit board, being electrically free from the control circuit, a wiring pattern land disposed on the FPC, being electrically connected with the pin terminal, and a dummy wiring pattern land disposed on the FPC, being connected with the dummy pin terminal.
Abstract:
A motor current controller operates to: set a reference current value and a decay mode switching time for each PWM cycle based on a positional relationship between a rotor and a stator; switch an H-bridge circuit to the charge mode at the time of start of each PWM cycle; switch the H-bridge circuit to the fast decay mode and store a charge mode time when determined that the motor current is greater than the reference current value; switch the H-bridge circuit to the slow decay mode when the decay mode switching time elapses; compare the charge mode time of the corresponding PWM cycle in a present falling side with the charge mode time of the PWM cycle in a previous falling side; update the decay mode switching time of the PWM cycle previous to the corresponding PWM cycle in a subsequent falling side.
Abstract:
A controller of a motor controller operates to perform a process including: controlling the H bridge circuit to switch to the charge mode; controlling the H bridge circuit to switch to the high-dissipation mode when the zero-cross detector detects that the back electromotive force voltage of the motor coil connected to a phase of the H bridge circuit shortly before the H bridge circuit is zero-crossed; controlling the H bridge circuit to switch to the low-dissipation mode after a predetermined time has elapsed; and controlling the H bridge circuit to switch to the free mode when the voltage detector detects that the differential voltage between the motor coils connected to the H bridge circuit is lower than a predetermined voltage.
Abstract:
A motor current controller includes: an H-bridge circuit that includes a switching element and is connected to a motor coil provided in a motor; and a control unit that drives the switching element every PWM cycle and designates an operation mode from among a plurality of modes including a charge mode, in which a motor current flowing in the motor coil increases, and a decay mode, in which the motor current is decreased for the H-bridge circuit. The control unit operates to select the decay mode as the operation mode with higher priority during a period in which the PWM cycle ends after the maximum duty time elapses from the start of each PWM cycle.
Abstract:
A controller of a motor controller operates to perform a process including: controlling the H bridge circuit to switch to the charge mode; controlling the H bridge circuit to switch to the high-dissipation mode when the zero-cross detector detects that the back electromotive force voltage of the motor coil connected to a phase of the H bridge circuit shortly before the H bridge circuit is zero-crossed; controlling the H bridge circuit to switch to the low-dissipation mode after a predetermined time has elapsed; and controlling the H bridge circuit to switch to the free mode when the motor current detector detects that the motor current flowing in the motor coil connected to the H bridge circuit flows in a direction opposite to that in the charge mode.
Abstract:
There is provided a motor control device controlling an energizing state of a coil of each phase for driving a stepping motor having multiple phase coils. The motor control device includes a detecting unit configured to detect whether the stepping motor is out of step, and a reverse rotating unit configured, when the detecting unit detects that the stepping motor is out of step, to rotate the stepping motor in a second rotation direction reverse to a first rotation direction, which is a rotation direction of the stepping motor before detecting out-of-step, by a number of steps with which a stress received by the stepping motor is alleviated, before the stepping motor spontaneously rotates in the second direction.