Method for producing sulfide solid electrolyte

    公开(公告)号:US12103848B2

    公开(公告)日:2024-10-01

    申请号:US17434876

    申请日:2020-02-25

    发明人: Tomohiro Ito

    IPC分类号: C01B25/14 H01M10/0562

    摘要: A method for producing a sulfide solid electrolyte includes: forming an Li—P—S homogeneous solution prepared by mixing Li2S and P2S5 with each other in an organic solvent so that the Li2S/P2S5 molar ratio is from 0.7 to 1.5; forming an Li—Si—S homogeneous solution, which contains prepared containing at least elemental lithium (Li), elemental silicon (Si) and elemental sulfur (S) in an organic solvent; mixing a homogeneous mixed solution prepared by mixing the Li—P—S homogeneous solution and the Li—Si—S homogeneous solution with each other; forming a slurry prepared by mixing the homogeneous mixed solution and Li2S with each other; drying a precursor obtained by removing the organic solvent from the slurry; and a heating a sulfide solid electrolyte obtained by heating the precursor at 200-700° C.

    Method for producing LGPS-based solid electrolyte

    公开(公告)号:US11489194B2

    公开(公告)日:2022-11-01

    申请号:US16641164

    申请日:2018-08-16

    摘要: A method for producing an LGPS-type solid electrolyte can be provided, the method includes preparing a homogeneous solution by mixing and reacting Li2S and P2S5 in an organic solution such that the molar ratio of Li2S/P2S5 is 1.0-1.85; forming a precipitate by adding, to the homogeneous solution, at least one MS2 (M is selected from the group consisting of Ge, Si, and Sn) and Li2S and then mixing; obtaining a precursor by removing the organic solution from the precipitate; and obtaining the LGPS-type solid electrolyte by heating the precursor at 200-700° C.

    Production method for LGPS-based solid electrolyte

    公开(公告)号:US10930973B2

    公开(公告)日:2021-02-23

    申请号:US16494514

    申请日:2018-03-16

    摘要: The present invention provides an LGPS-based solid electrolyte production method characterized by having a step in which a mixture of Li3PS4 crystals having a peak at 420±10 cm−1 in a Raman measurement and Li4MS4 crystals (M being selected from the group consisting of Ge, Si, and Sn) is heat treated at 300-700° C. In addition, the present invention can provide an LGPS-based solid electrolyte production method characterized by having: a step in which Li3PS4 crystals having a peak at 420±10 cm−1 in a Raman measurement, Li2S crystals, and sulfide crystals indicated by MS2 (M being selected from the group consisting of Ge, Si, and Sn) are mixed while still having crystals present and a precursor is synthesized; and a step in which the precursor is heat treated at 300-700° C.