Abstract:
Provided are monomers useful for dental materials that include a compound in which a core and a specific terminal group are bonded to each other directly or via a linking group, wherein the core is a C1-200 polyvalent organic group having a valence of not less than 3 containing an oxygen atom or a nitrogen atom in which an atom bonded to the terminal group or the linking group is the oxygen atom or the nitrogen atom; the terminal group is a specific (meth)acryloyl group-containing group, a (meth)acryloyl group, a C1-20 hydrocarbon group or a hydrogen atom, and the terminal group needs to meet specific requirements; and the linking group is a specific divalent group, and when the compound contains a plurality of linking groups, the linking groups may be the same as or different from each other. Compositions, dental materials and kits are also provided.
Abstract:
Provided are monomers useful for dental materials that include a compound in which a core and a specific terminal group are bonded to each other directly or via a linking group, wherein the core is a C1-200 polyvalent organic group having a valence of not less than 3 containing an oxygen atom or a nitrogen atom in which an atom bonded to the terminal group or the linking group is the oxygen atom or the nitrogen atom; the terminal group is a specific (meth)acryloyl group-containing group, a (meth)acryloyl group, a C1-20 hydrocarbon group or a hydrogen atom, and the terminal group needs to meet specific requirements; and the linking group is a specific divalent group, and when the compound contains a plurality of linking groups, the linking groups may be the same as or different from each other. Compositions, dental materials and kits are also provided.
Abstract:
[Problem to be solved]There is provided a process for producing an olefin polymer that is capable of producing an olefin polymer having high heat resistance and high molecular weight with excellent catalytic activity.[Solution to problem]The process for producing an olefin polymer includes a step of polymerizing at least one olefin selected from ethylene and α-olefins having 4 to 30 carbon atoms in the presence of an olefin polymerization catalyst containing a transition metal compound represented by the general formula [I], the olefin polymer including constituent units derived from ethylene and α-olefins having 4 to 30 carbon atoms in a total amount between more than 50 mol % and not more than 100 mol %, [in the formula [I], R1, R3 and R5 to R16 are each independently a hydrogen atom, a hydrocarbon group or the like; R2 is a hydrocarbon group or the like; R4 is a hydrogen atom; M is a transition metal of Group IV; Q is a halogen atom or the like; and j is an integer of 1 to 4].
Abstract:
[Problem to be solved]There is provided a process for producing an olefin polymer that is capable of producing an olefin polymer having high heat resistance and high molecular weight with excellent catalytic activity.Solution to problemThe process for producing an olefin polymer includes a step of polymerizing at least one olefin selected from ethylene and α-olefins having 4 to 30 carbon atoms in the presence of an olefin polymerization catalyst containing a transition metal compound represented by the general formula [I], the olefin polymer including constituent units derived from ethylene and α-olefins having 4 to 30 carbon atoms in a total amount between more than 50 mol % and not more than 100 mol %, [in the formula [I], R1, R3 and R5 to R16 are each independently a hydrogen atom, a hydrocarbon group or the like; R2 is a hydrocarbon group or the like; R4 is a hydrogen atom; M is a transition metal of Group IV; Q is a halogen atom or the like; and j is an integer of 1 to 4].
Abstract:
An object of the invention is to provide a solid polyaluminoxane composition suitably used as a cocatalyst and a catalyst carrier in combination with an olefin oligomerization or polymerization catalyst, without the use of solid inorganic carriers such as silica. The solid polyaluminoxane composition of the invention includes a polyalkylaluminoxane and a trialkylaluminum, and has a solubility in n-hexane at 25° C. of less than 0.50 mol % as measured by a specific method (i), a solubility in toluene at 25° C. of less than 1.0 mol % as measured by a specific method (ii), and a 13 mol % or more molar fraction of alkyl groups derived from the trialkylaluminum moieties relative to the total number of moles of alkyl groups derived from the polyalkylaluminoxane moieties and the alkyl groups derived from the trialkylaluminum moieties as measured with respect to tetrahydrofuran-d8 soluble components by a specific method (iii).
Abstract:
[Problem to be Solved]There is provided a process for producing an olefin polymer that is capable of producing an olefin polymer having high heat resistance and high molecular weight with excellent catalytic activity.[Solution to Problem]The process for producing an olefin polymer includes a step of polymerizing at least one olefin selected from ethylene and α-olefins having 4 to 30 carbon atoms in the presence of an olefin polymerization catalyst containing a transition metal compound represented by the general formula [I], the olefin polymer including constituent units derived from ethylene and α-olefins having 4 to 30 carbon atoms in a total amount between more than 50 mol % and not more than 100 mol %, [in the formula [I], R1, R3 and R5 to R16 are each independently a hydrogen atom, a hydrocarbon group or the like; R2 is a hydrocarbon group or the like; R4 is a hydrogen atom; M is a transition metal of Group IV; Q is a halogen atom or the like; and j is an integer of 1 to 4].
Abstract:
An object of the invention is to provide a solid polyaluminoxane composition suitably used as a cocatalyst and a catalyst carrier in combination with an olefin oligomerization or polymerization catalyst, without the use of solid inorganic carriers such as silica. The solid polyaluminoxane composition of the invention includes a polyalkylaluminoxane and a trialkylaluminum, and has a solubility in n-hexane at 25° C. of less than 0.50 mol % as measured by a specific method (i), a solubility in toluene at 25° C. of less than 1.0 mol % as measured by a specific method (ii), and a 13 mol % or more molar fraction of alkyl groups derived from the trialkylaluminum moieties relative to the total number of moles of alkyl groups derived from the polyalkylaluminoxane moieties and the alkyl groups derived from the trialkylaluminum moieties as measured with respect to tetrahydrofuran-d8 soluble components by a specific method (iii).
Abstract:
An object of the invention is to provide a solid polyaluminoxane composition suitably used as a cocatalyst and a catalyst carrier in combination with an olefin oligomerization or polymerization catalyst, without the use of solid inorganic carriers such as silica. The solid polyaluminoxane composition of the invention includes a polyalkylaluminoxane and a trialkylaluminum, and has a solubility in n-hexane at 25° C. of less than 0.50 mol % as measured by a specific method (i), a solubility in toluene at 25° C. of less than 1.0 mol % as measured by a specific method (ii), and a 13 mol % or more molar fraction of alkyl groups derived from the trialkylaluminum moieties relative to the total number of moles of alkyl groups derived from the polyalkylaluminoxane moieties and the alkyl groups derived from the trialkylaluminum moieties as measured with respect to tetrahydrofuran-d8 soluble components by a specific method (iii).