Abstract:
A temperature control system and method are provided. The system includes a first channel, a second channel, a heating element, a DUT chamber, a converter, a first PID controller, and at least one switching regulator. The heating element is disposed downstream of the first and the second channels to heat the first air from the first channel or the second air from the second channel according to an input power so as to provide mixing air with a temperature into the DUT chamber. The converter converts an AC power to a DC power. The first PID controller provides a first input signal according to a first set point and an amount of power consumed by the heating element. The input power is adjusted by the switching regulator to drive the heating element according to the first input signal. Thus, the use of electrical power is more efficient.
Abstract:
A cooling system includes a cooling device, a controller and a defrosting unit. The cooling device has a compressor, a condenser, an expander, an evaporator, a cooling channel and a coolant. The coolant is functioned in the evaporator to thermally exchange with a working fluid in a pipe. The controller is adapted for controlling the temperature of the working fluid by controlling the cooling device. The defrosting unit has a switch disposed on the cooling channel and located between the compressor and the condenser, and a defrosting channel connected with the switch. After passing through the switch, the coolant is optionally fed to anyone of the cooling channel and the defrosting channel. After flowing through the defrosting channel, the coolant passes through the evaporator and then flows back to the compressor. As a result, the cooling system is capable of fast defrosting without using a heater.
Abstract:
A temperature control system and method are provided. The system includes a first channel, a second channel, a heating element, a DUT chamber, a converter, a first PID controller, and at least one switching regulator. The heating element is disposed downstream of the first and the second channels to heat the first air from the first channel or the second air from the second channel according to an input power so as to provide mixing air with a temperature into the DUT chamber. The converter converts an AC power to a DC power. The first PID controller provides a first input signal according to a first set point and an amount of power consumed by the heating element. The input power is adjusted by the switching regulator to drive the heating element according to the first input signal. Thus, the use of electrical power is more efficient.
Abstract:
A working fluid output device for a temperature control system includes an output head, a fitting module and a quick release mechanism. A bottom plate of the output head and a top plate of the fitting module each have an installing surface and a through hole. The quick release mechanism has first and second units disposed on the two installing surfaces, respectively. The first unit includes an operable member having a positioning portion and configured to be operated by a user to move the positioning portion move between lock and unlocked positions to enable that the first unit is detachably coupled with the second unit and the fitting module is detachably attached to the output head in a way that the installing surfaces face each other and the through holes communicate with each other.
Abstract:
A heating device includes a housing having a flow channel, a heater disposed in the flow channel, an optical rod, a light guider and a photodetector. The optical rod has a transparent body, a first end portion, and a second end portion located inside the housing. The light guider is provided at the second end portion for guiding lights emitted by the heater toward the first end portion. The photodetector is located around the first end portion and faces the second end portion for indirectly receiving the lights emitted by the heater to the light guider through the transparent body. The temperature of the heater can be measured efficiently and timely by using the photodetector having a high responding speed, such that an overheat or damage of the heater can be prevented by controlling the heater based on the measured temperature.
Abstract:
A temperature controlling equipment includes a connection head of a fluid output device, an isolation hood, a drying chamber and a dry air source. The connection head of the fluid output device has an output nozzle and a first fluid output pipe. The isolation hood has a hood body and a second fluid output pipe. The hood body defines a working space. The output nozzle is communicated with the working space. The second fluid output pipe is communicated with the working space and the first fluid output pipe. The first fluid output pipe and the second fluid output pipe have a connection interface in between. The connection interface is at least partially located in the drying chamber. The dry air source is communicated with the drying chamber and is configured to provide a dry air to the drying chamber.
Abstract:
A fluid discharge device includes a discharge tube, an outer tube and at least one baffle. The discharge tube has a discharge port. The discharge tube has an end surface adjacent to the discharge port. The outer tube is sleeved outside the discharge tube. The outer tube has at least one passage. The passage is configured to flow a clean dry air. The passage has an outlet. The baffle is disposed outside the outlet. When the clean dry air passes through the outlet, at least part of the clean dry air is blocked by the baffle and is directed to the end surface of the discharge tube.