摘要:
Some embodiments provide techniques and systems for optimizing a circuit design's global leakage power. During operation, the system can determine leakage potentials for logic gates in the circuit design, such that a logic gate's leakage potential indicates an amount or degree by which the logic gate's leakage power is decreasable. The system can then determine a processing order for processing the logic gates based at least on the leakage potentials. Next, the system can optimize the circuit design's leakage power by attempting to decrease leakage power of logic gates according to the processing order.
摘要:
A leakage power optimization system optimizes leakage power of a circuit design which includes a set of logic gates. The system selects a leakage-power-reducing transformation for a logic gate, and determines a zone around the logic gate. This zone includes logic gates within a first predetermined number of levels in the logic gate's fan-out, the logic gate's fan-in, and a second predetermined number of levels in the logic gate's fan-in's fan-out. The system propagates arrival times within the zone to obtain updated slack values at endpoints of the zone. Then, in response to determining that the updated slack values at the endpoints of the zone do not degrade one or more circuit timing metrics, the system applies the leakage-power-reducing transformation to the logic gate.
摘要:
Systems and techniques for optimizing a circuit design are described. Some embodiments reduce the number of gates in the library (e.g., by dynamically pruning the library) which are considered for optimization. Some embodiments create a linear delay model, and use the linear delay model instead of a non-linear delay model to substantially reduce the amount of computation required to check whether or not a particular replacement gate improves one or more metrics of the circuit design. Some embodiments determine an order for processing the gates in the library or for processing input pins of a gate to facilitate early rejection of a candidate gate in the library of gates. In some embodiments, the evaluation of the impact of a candidate gate transformation is done progressively and level-by-level only up to the point where the gate transformation degrades one or more metrics.
摘要:
Systems and techniques for optimizing a circuit design are described. Some embodiments reduce the number of gates in the library (e.g., by dynamically pruning the library) which are considered for optimization. Some embodiments create a linear delay model, and use the linear delay model instead of a non-linear delay model to substantially reduce the amount of computation required to check whether or not a particular replacement gate improves one or more metrics of the circuit design. Some embodiments determine an order for processing the gates in the library or for processing input pins of a gate to facilitate early rejection of a candidate gate in the library of gates. In some embodiments, the evaluation of the impact of a candidate gate transformation is done progressively and level-by-level only up to the point where the gate transformation degrades one or more metrics.
摘要:
Some embodiments provide techniques and systems for optimizing a circuit design's global leakage power. During operation, the system can determine leakage potentials for logic gates in the circuit design, such that a logic gate's leakage potential indicates an amount or degree by which the logic gate's leakage power is decreasable. The system can then determine a processing order for processing the logic gates based at least on the leakage potentials. Next, the system can optimize the circuit design's leakage power by attempting to decrease leakage power of logic gates according to the processing order.
摘要:
A leakage power optimization system optimizes leakage power of a circuit design which includes a set of logic gates. The system selects a leakage-power-reducing transformation for a logic gate, and determines a zone around the logic gate. This zone includes logic gates within a first predetermined number of levels in the logic gate's fan-out, the logic gate's fan-in, and a second predetermined number of levels in the logic gate's fan-in's fan-out. The system propagates arrival times within the zone to obtain updated slack values at endpoints of the zone. Then, in response to determining that the updated slack values at the endpoints of the zone do not degrade one or more circuit timing metrics, the system applies the leakage-power-reducing transformation to the logic gate.
摘要:
Some embodiments of the present invention provide techniques and systems for efficiently optimizing a circuit design for one or more multi-mode multi-corner (MCMM) scenarios. A system can select an optimizing transformation for a logic gate, which if applied to the logic gate, does not degrade a timing metric in a local context of the logic gate. Next, the system can determine whether applying the optimizing transformation to the logic gate degrades the timing metric in a zone around the logic gate. If so, the system can reject the optimizing transformation. Otherwise, the system can determine whether applying the optimizing transformation to the logic gate degrades the timing metric in the circuit design. If so, the system can reject the optimizing transformation. Otherwise, the system can accept the optimizing transformation.
摘要:
Some embodiments provide techniques and systems for determining a change indicator for an endpoint, a pathgroup, a design, and/or a flow. The system can determine base critical path delays and base slacks for the endpoints in a base implementation of the circuit design. The system can then determine the new critical path delays and new slacks for the endpoints in a new implementation of the circuit design. Next, the system determines slack differences for the endpoints using the new slacks and the base slacks. Finally, for each endpoint, the system can determine an endpoint change indicator using the associated slack difference, the base critical path delay, and the new critical path delay. A pathgroup change indicator can be determined using endpoint change indicators. A design change indicator can be determined using pathgroup change indicators or scenario change indicators. A design flow change indicator can be determined using design change indicators.
摘要:
Some embodiments of the present invention provide techniques and systems for performing aggressive and dynamic scenario reduction during different phases of optimization, e.g., during delay, area, leakage and DRC (design rule check) optimization. Specifically, essential scenarios at gates and timing end-points can be identified and then used during the dynamic scenario reduction process. In some embodiments, margin values associated with various constraints can be used to determine the set of essential scenarios to account for constrained objects that are near critical in addition to the constrained objects that are the worst violators. In some embodiments, at any point during the optimization process, only the set of essential scenarios are kept active, thereby substantially reducing runtime and memory requirements without compromising on the quality of results.
摘要:
Some embodiments of the present invention provide techniques and systems for determining and using margin values. An arrival time at an output pin of a logic gate can be determined. Next, required times at the output pin of the logic gate can be determined. Each required time can be associated with a timing end-point in a path-group, affected by that pin. The system can then determine a first set of slack values at the output pin of the logic gate by computing a difference between the required times and the arrival time. Next, the system can determine a set of margin values at the output pin of the logic gate by computing a difference between the first set of slack values and a second set of slack values at the timing end-points in the path-groups. Next, the system can use the set of margin values to optimize the logic gate.