Abstract:
A glasslike carbon is produced by pouring a thermosetting resin having a viscosity of 200 P or less and a mold shrinkage ratio of 2.0% to 8.0% into a concave portion of a mold, forming the thermosetting resin in the mold by heating, demolding the formed resin, and carbonizing the demolded resin.
Abstract:
A fluid heating apparatus is provided, which can efficiently heat a fluid to be heated without contaminating the fluid. The fluid heating apparatus has a heating room including a magnetic-flux permeable material, and having an inlet for introducing a fluid to be heated, and an outlet for exhausting a heat-treated fluid; a plurality of glassy carbon fillers filled in the heating room, each of which is partially or wholly formed in a shape of curved surface or protrusion; and an induction coil disposed outside the heating room for inductively heating the glassy carbon fillers.
Abstract:
Disclosed is an induction heating type pure water heating apparatus capable of heating pure water with efficiency and without contaminating pure water. The apparatus is characterized by including a susceptor formed of glassy carbon with a water absorption coefficient of 0.5 mass % or less, and capable of contacting with pure water, a container made of a magnetic flux transmissive material, and formed so as to accommodate the susceptor and so as to allow pure water to pass therethrough, and an induction coil disposed in such a state as to surround the container or as to be adjacent to the container.
Abstract:
Disclosed is a seamless central diameter expanded hollow molded articles made only of glasslike carbon. A fabrication method of the seamless carbonaceous hollow molded article having an expanded core includes: a cast-molding process, in which a liquid thermosetting resin is poured into a cavity formed between a core and an outer body made of a thermally fusible (or hot meltable) material, and a seamless thermosetting resin molded article having an expanded core is formed in hollow shape; a core flowing out process, in which the thermally fusible material of the cast molded core melts by heating and flows out; and a carbonization process, in which the thermosetting resin molded article is carbonized.
Abstract:
Disclosed herein is a heating apparatus designed to heat an object to be heated through induction heat generation of a heat generating part made of glasslike carbon, and that can rapidly raise or lower the temperature without contamination of the object which has a large area and is formed into a shape of a substrate such as a silicon wafer. The heating apparatus includes a heating container for receiving the object. The container is constructed such that at least a portion of the container formed into a shape of a plate is made of glasslike carbon, and that the portion of the container serves as a heat generating part. A high-frequency plate-shaped coil is disposed at the outside of the container while the coil is adjacent and is opposed to the heat generating part of the container, and which is wound approximately into a shape of a plate. The heating apparatus further includes a container-inside gas atmosphere control means for controlling the inside of the container to be maintained at a predetermined gas atmosphere. When electric current is supplied to the coil, heat is generated from the heat generating part through induction heat generation of the heat generating part, whereby the object is heated.
Abstract:
An inductive heating element includes a substrate and an insulating layer covering the substrate. The substrate contains a carbonaceous material such as glassy carbon. The inductive heating element effectively exchanges heat with a flowing gas to be heated and thereby efficiently heat the gas.
Abstract:
A method for manufacturing a glass-like carbon molded body is provided which can obtain an excellent glass-like carbon molded body without cracks from a thermosetting resin molded body having a large thickness exceeding, for example, 10 mm, unlike in the conventional method in which an upper limit of the resin molded body has been, for example, 7 mm, even at the rate of temperature increase that is industrially practical considering the productivity at a carbonization step of heating the thermosetting resin molded body when manufacturing the glass-like carbon molded body. The method for manufacturing a glass-like carbon molded body comprises a step of carbonizing a thermosetting resin molded body by heating the molded body in inert atmosphere. The thermosetting resin molded body has one or more opened vent holes on a surface thereof, and satisfies the following formula, in which r (mm) is either a distance from an arbitrary point inside the thermosetting resin molded body to an outer surface thereof, or a distance from the arbitrary point to a surface of the vent hole, whichever is shorter, and x (° C./h) is an average rate of temperature increase in a range of 400 to 600° C. at the carbonization step: r