摘要:
A powder essentially composed of aggregates based on boron nitride, the powder exhibiting an overall chemical composition, as percentages by weight, including between 40 and 45% of boron, between 53 and 57% of nitrogen, less than 400 ppm by weight of calcium, less than 5%, in total, of other elements and more than 90% of boron nitride, limit included, as percentage by weight and on the basis of the combined crystalline phases, a mean circularity of greater than or equal to 0.90, a median pore size of less than or equal to 1.5 μm and an apparent porosity of less than or equal to 55%.
摘要:
A resin-impregnated boron nitride body includes a polymer-derived boron nitride and a resin. A process for manufacturing such a resin-impregnated boron nitride body includes: polymerizing a boron nitride molecular precursor into a preceramic polymer shaping the preceramic polymer to form an infusible polymer body; submitting the polymer body to a thermal treatment to obtain a boron nitride body; impregnating the boron nitride body with a resin; and curing the resin.
摘要:
A silicon carbide composite that is lightweight and has high thermal conductivity as well as a low thermal expansion coefficient close to that of a ceramic substrate, particularly a silicon carbide composite material suitable for heat dissipating components that are required to be particularly free of warping, such as heat sinks. A method for manufacturing a silicon carbide composite obtained by impregnating a porous silicon carbide molded body with a metal having aluminum as a main component, wherein the method for manufacturing a silicon carbide composite material is characterized in that the porous silicon carbide molded article is formed by a wet molding method, and preferably the wet molding method is a wet press method or is a wet casting method.
摘要:
An object is to provide a graphite-copper composite electrode material that is capable of reducing electrode wear to a practically usable level and to provide an electrical discharge machining electrode using the material. A graphite-copper composite electrode material includes a substrate comprising a graphite material and having pores, and copper impregnated in the pores of the substrate, the electrode material having an electrical resistivity of 2.5 μΩm or less, preferably 1.5 μΩm or less, more preferably 1.0 μΩm or less. It is desirable that the substrate comprising the graphite material have an anisotropy ratio of 1.2 or less. It is desirable that an impregnation rate φ of the copper in the electrode material is 13% or greater. It is desirable that the substrate comprising the graphite material have a bulk density of from 1.40 Mg/m3 to 1.85 Mg/m3.
摘要翻译:本发明的目的是提供一种能够将电极磨损降低到实际可用水平并提供使用该材料的放电加工电极的石墨 - 铜复合电极材料。 石墨 - 铜复合电极材料包括包含石墨材料并具有孔隙的基底和浸渍在基底孔中的铜,所述电极材料的电阻率为2.5μΩm以下,优选为1.5μΩm以下,更优选为1.0 μΩm以下。 希望包含石墨材料的基材的各向异性比为1.2以下。 希望电极材料中的铜的浸渍率φ为13%以上。 希望包含石墨材料的基材的堆积密度为1.40Mg / m 3至1.85Mg / m 3。
摘要:
A magnetic material for antennas including: an M-type hexagonal ferrite represented by the following general formula (1) as a main phase, MA.Fe12-x.MBx.O19 (wherein MA is at least one kind selected from the group consisting of Sr and Ba, MB is MC or MD, MC is at least one kind selected from the group consisting of Al, Cr, Sc and In, MD is an equivalent mixture of at least one kind selected from the group consisting of Ti, Sn and Zr and at least one kind selected from the group consisting of Ni, Zn, Mn, Mg, Cu and Co, X is a number from 1 to 5), and an average crystal particle diameter is equal to or greater than 5 μm.
摘要:
Under one aspect, a structure includes a tetrahedrite substrate; a first contact metal layer disposed over and in direct contact with the tetrahedrite substrate; and a second contact metal layer disposed over the first contact metal layer. A thermoelectric device can include such a structure. Under another aspect, a method includes providing a tetrahedrite substrate; disposing a first contact metal layer over and in direct contact with the tetrahedrite substrate; and disposing a second contact metal layer over the first contact metal layer. A method of making a thermoelectric device can include such a method.
摘要:
A resin-impregnated boron nitride sintered body having superior thermal conductivity and superior strength, and a resin-impregnated boron nitride sintered body having superior conductivity and small anisotropy of thermal conductivity are provided. A resin-impregnated boron nitride sintered body, including: 30 to 90 volume % of a boron nitride sintered body having boron nitride particles bonded three-dimensionally; and 10 to 70 volume % of a resin; wherein the boron nitride sintered body has a porosity of 10 to 70%; the boron nitride particles of the boron nitride sintered body has an average long diameter of 10 μm or more; the boron nitride sintered body has a graphitization index by powder X-ray diffractometry is 4.0 or less; and an orientation degree of the boron nitride particles of the boron nitride sintered body by I.O.P is 0.01 to 0.05 or 20 to 100; and a resin-impregnated boron nitride sintered body, including: 30 to 90 volume % of a boron nitride sintered body having boron nitride particles bonded three-dimensionally is provided.
摘要:
The present invention provides a process for producing a metalized substrate in which a predetermined metal paste composition is applied onto a sintered nitride ceramic substrate (10); the resultant is fired in a heat-resistant container at a predetermined condition; and the substrate (10) and a metal layer (30) are bonded together to each other through a titanium nitride layer (20).
摘要:
Different kinds of printing pastes or inks are utilized in various combinations to develop multiple ceramic dielectric layers on graphitic substrates in order to create effective dielectric ceramic layers that combine good adhesion to both graphitic substrates and printed copper traces, and strong insulating capability. The pastes or inks may comprise a high thermal conductivity powder.
摘要:
One object is to provide a deposition technique for forming an oxide semiconductor film. By forming an oxide semiconductor film using a sputtering target including a sintered body of a metal oxide whose concentration of hydrogen contained is low, for example, lower than 1×1016 atoms/cm3, the oxide semiconductor film contains a small amount of impurities such as a compound containing hydrogen typified by H2O or a hydrogen atom. In addition, this oxide semiconductor film is used as an active layer of a transistor.