摘要:
An anti-rolling control system for an automotive vehicle is provided. This control system comprises shock absorbers each disposed between a vehicle body and a suspension member rotatably supporting a wheel and being variable of damping force within a range from soft to hard damping characteristics, a steering sensor for monitoring a steered angle of a steering wheel, and a rolling motion control unit. The rolling motion control unit is operable to derive steering angular velocity based on the steered angle of the steering wheel to determine a transient status of vehicle rolling motion when the steering angular velocity is greater than a threshold value. When the vehicle is in the transient status of rolling motion, the damping forces of the shock absorbers are modified to suppress the rolling motion.
摘要:
A suspension control system for an automotive vehicle is provided in which a movement of a sprung mass velocity is monitored, when the magnitude of the sprung mass velocity is below a predetermined threshold value, a control unit outputs a control signal to a pulse motor to vary the position of an adjuster so that one of extension and compression stroke sides of a position member of a shock absorber, whose direction is the same as that of the sprung mass velocity provides a high damping coefficient, and when the magnitude of the sprung mass velocity is above the predetermined threshold value, a control constant for the damping coefficient is changed toward a high damping sensitivity range until the sprung mass velocity exceeding the predetermined threshold value is reduced below another predetermined threshold value, a magnitude of the other predetermined threshold value being lower than that of the predetermined threshold value.
摘要:
A suspension control system for an automotive vehicle is disclosed in which, in each shock absorber, interposed between the vehicular body and tire wheel, a damping coefficient varying adjuster is provided which changes a damping coefficient at either or both of piston stroke sides according to a control signal input thereto so that the damping coefficient is set to a target damping coefficient position, at lease one sprung mass acceleration sensor and at least one sprung mass speed sensor are provided, and the control unit is provided which outputs the control signal to the damping coefficient varying means according to a result of determination of whether the vertical sprung mass acceleration exceeds a predetermined threshold value and according to a direction and magnitude of the sprung mass speed so that the damping coefficient at either or both of the stroke sides is controlled to a target damping coefficient position.
摘要:
In a vehicular suspension a vertical acceleration of a sprung mass of a vehicular body and a relative speed between the sprung mass and an unsprung mass (viz., a wheel assembly) are detected. A sprung mass vibrating frequency is derived on the basis of detected vertical accelleration and relative speed, and a control unit determines whether the derived sprung mass vibrating frequency is equal to or higher than a predetermined dead frequency or not. The control unit outputs a control signal to the damper to change the damping force coefficient on the basis of the determination of whether the derived sprung mass vibrating frequency is equal to or higher than a predetermined dead frequency or not.
摘要:
The damping coefficient of a shock absorber of a suspension unit for a vehicle body of an automobile is varied in accordance with a vertical speed of the vehicle body such that it is normally varied in proportion to said vertical speed indicative signal however, from the time the vertical speed satisfies a predetermined relationship with a threshold level the largest damping coefficient is established and maintained and until the vertical speed reaches a peak.
摘要:
A suspension control system for an automotive vehicle is disclosed in which a band pass filter is provided which passes only a frequency component of either of a vertical sprung mass acceleration signal derived from a vertical G sensor or a vertical sprung mass speed signal derived from an integrator which integrates the vertical sprung mass acceleration signal, both vertical acceleration sprung mass speed signal and vertical sprung mass speed signal falling in a predetermined frequency range (e.g., 0.5 Hz through 3.0 Hz). A control unit outputs a control signal to an actuator so to vary the position of an adjuster of each or any one of shock absorbers, thus a damping coefficient being set to a target damping coefficient position according to the vertical sprung mass speed.
摘要:
An apparatus for controlling the damping coefficient of shock absorbers which are associated with the road wheels of the vehicle, produces control signals using one or more of a bouncing rate, a pitching rate and a rolling rate value which is filtered out of a plurality of outputs provided by a plurality of acceleration sensors which are each located in proximity of a shock absorber. The control signal can be modified using the outputs of weight sensors which are used to derive the relative velocities of the road wheels with respect to the vehicle body.
摘要:
A suspension control system for an automotive vehicle is provided. This suspension control system comprises variable damping force shock absorbers and a control unit which controls the shock absorbers to assume damping force characteristics in a range between preselected higher and lower damping coefficients. The control unit is operable to provide a control parameter indicative of bouncing motion of a vehicle body based on sprung vertical speed to determine a damping coefficient against the bouncing motion. When the control parameter is greater than a threshold value, the damping coefficient is modified to a lower value, while when the control parameter is less than the threshold value, the damping coefficient is modified to a higher value. With this damping coefficient modification, the bouncing motion is suppressed effectively while assuring passenger comfort.
摘要:
An apparatus for controlling damping coefficients for respective vehicular shock absorbers is disclosed in which a plurality of shock absorbers are interposed between predetermined parts of a vehicle body and tire wheel and are provided with damping coefficient changing members, each changing member varying the coefficients of the damping shock absorbers at multiple stages by changing position of an associated actuator, the actuator receiving a signal to change the position of the damping coefficient changing member on the basis of an input signal derived from a sprung mass vertical G sensor. Particularly, a correction portion is provided in a control unit which varies a position change rate of the damping coefficient changing member according to a value of the input signal derived from an input signal sensor, e.g., the sprung mass vertical G sensor.
摘要:
An anti-rolling motion control system for an automotive vehicle is provided. This control system comprises shock absorbers each being variable of a damping coefficient within a range from softer to harder damping characteristics, a steering sensor for monitoring a steered angle of a steering wheel, and a rolling motion control unit. The rolling motion control unit is operable to derive steered angular velocity based on the steered angle of the steering wheel. The rolling motion control unit controls the shock absorbers so that the damping coefficients are modified to exhibit the harder damping characteristics when the steered angular velocity and the steered angle are greater than preselected first and second threshold values respectively for suppressing rolling motion of a vehicle body effectively while securing traveling stability.