摘要:
An embodiment of the present invention is a technique to process system management interrupt. A system management interrupt (SMI) is received. The SMI is associated with a system management mode (SMM). A conditional SMI inter-processor interrupt (IPI) message is broadcast to at least a processor. The SMI is processed without waiting for the at least processor to check into the SMM. A clear pending SMI is broadcast to the processors at end of SMI processing to clear a pending SMI condition.
摘要:
An embodiment of the present invention is a technique to process system management interrupt. A system management interrupt (SMI) is received. The SMI is associated with a system management mode (SMM). A conditional SMI inter-processor interrupt (IPI) message is broadcast to at least a processor. The SMI is processed without waiting for the at least processor to check into the SMM. A clear pending SMI is broadcast to the processors at end of SMI processing to clear a pending SMI condition.
摘要:
A dynamic reconfiguration to include on-line addition, deletion, and replacement of individual modules of to support dynamic partitioning of a system, interconnect (link) reconfiguration, memory RAS to allow migration and mirroring without OS intervention, dynamic memory reinterleaving, CPU and socket migration, and support for global shared memory across partitions is described. To facilitate the on-line addition or deletion, the firmware is able to quiesce and de-quiesce the domain of interest so that many system resources, such as routing tables and address decoders, can be updated in what essentially appears to be an atomic operation to the software layer above the firmware.
摘要:
Multiple initialization techniques for system and component in a point-to-point architecture are discussed. Consequently, the techniques allow for flexible system/socket layer parameters to be tailored to the needs of the platform, such as, desktop, mobile, small server, large server, etc., as well as the component types such as IA32/IPF processors, memory controllers, IO Hubs, etc. Furthermore, the techniques facilitate powering up with the correct set of POC values, hence, it avoids multiple warm resets and improves boot time. In one embodiment, registers to hold new values, such as, Configuration Values Driven during Reset (CVDR), and Configuration Values Captured during Reset (CVCR) may be eliminated.For example, the POC values could be from the following: Platform Input Clock to Core Clock Ratio, Enable/disable LT, Configurable Restart, Burn In Initialization Mode, Disable Hyper Threading, System BSP Socket Indication, and Platform Topology Index.
摘要:
A dynamic reconfiguration to include on-line addition, deletion, and replacement of individual modules of to support dynamic partitioning of a system, interconnect (link) reconfiguration, memory RAS to allow migration and mirroring without OS intervention, dynamic memory reinterleaving, CPU and socket migration, and support for global shared memory across partitions is described. To facilitate the on-line addition or deletion, the firmware is able to quiesce and de-quiesce the domain of interest so that many system resources, such as routing tables and address decoders, can be updated in what essentially appears to be an atomic operation to the software layer above the firmware.
摘要:
Multiple initialization techniques for system and component in a point-to-point architecture are discussed. Consequently, the techniques allow for flexible system/socket layer parameters to be tailored to the needs of the platform, such as, desktop, mobile, small server, large server, etc., as well as the component types such as IA32/IPF processors, memory controllers, IO Hubs, etc. Furthermore, the techniques facilitate powering up with the correct set of POC values, hence, it avoids multiple warm resets and improves boot time. In one embodiment, registers to hold new values, such as, Configuration Values Driven during Reset (CVDR), and Configuration Values Captured during Reset (CVCR) may be eliminated.For example, the POC values could be from the following: Platform Input Clock to Core Clock Ratio, Enable/disable LT, Configurable Restart, Burn In Initialization Mode, Disable Hyper Threading, System BSP Socket Indication, and Platform Topology Index.
摘要:
A dynamic reconfiguration to include on-line addition, deletion, and replacement of individual modules of to support dynamic partitioning of a system, interconnect (link) reconfiguration, memory RAS to allow migration and mirroring without OS intervention, dynamic memory reinterleaving, CPU and socket migration, and support for global shared memory across partitions is described. To facilitate the on-line addition or deletion, the firmware is able to quiesce and de-quiesce the domain of interest so that many system resources, such as routing tables and address decoders, can be updated in what essentially appears to be an atomic operation to the software layer above the firmware.
摘要:
A dynamic reconfiguration to include on-line addition, deletion, and replacement of individual modules of to support dynamic partitioning of a system, interconnect (link) reconfiguration, memory RAS to allow migration and mirroring without OS intervention, dynamic memory reinterleaving, CPU and socket migration, and support for global shared memory across partitions is described. To facilitate the on-line addition or deletion, the firmware is able to quiesce and de-quiesce the domain of interest so that many system resources, such as routing tables and address decoders, can be updated in what essentially appears to be an atomic operation to the software layer above the firmware.
摘要:
Multiple initialization techniques for system and component in a point-to-point architecture are discussed. Consequently, the techniques allow for flexible system/socket layer parameters to be tailored to the needs of the platform, such as, desktop, mobile, small server, large server, etc., as well as the component types such as IA32/IPF processors, memory controllers, IO Hubs, etc. Furthermore, the techniques facilitate powering up with the correct set of POC values, hence, it avoids multiple warm resets and improves boot time. In one embodiment, registers to hold new values, such as, Configuration Values Driven during Reset (CVDR), and Configuration Values Captured during Reset (CVCR) may be eliminated. For example, the POC values could be from the following: Platform Input Clock to Core Clock Ratio, Enable/disable LT, Configurable Restart, Burn In Initialization Mode, Disable Hyper Threading, System BSP Socket Indication, and Platform Topology Index.
摘要:
A dynamic reconfiguration to include on-line addition, deletion, and replacement of individual modules of to support dynamic partitioning of a system, interconnect (link) reconfiguration, memory RAS to allow migration and mirroring without OS intervention, dynamic memory reinterleaving, CPU and socket migration, and support for global shared memory across partitions is described. To facilitate the on-line addition or deletion, the firmware is able to quiesce and de-quiesce the domain of interest so that many system resources, such as routing tables and address decoders, can be updated in what essentially appears to be an atomic operation to the software layer above the firmware.