摘要:
A nanoparticle is able to emit single photons. A waveguide is coupled to the nanoparticle and able to receive the single photons. A backreflector is optically coupled to the waveguide and configured to reflect the single photons toward the waveguide.
摘要:
A nanoparticle is able to emit single photons. A waveguide is coupled to the nanoparticle and able to receive the single photons. A backreflector is optically coupled to the waveguide and configured to reflect the single photons toward the waveguide.
摘要:
Various embodiments of the present invention are directed to methods and systems for generating random numbers. In one embodiment, a quantum random number generator comprises: a state generator configured to generate a quantum system in a coherent state; a polarization states analyzer configured to project the quantum system onto one of four different polarization states, and detect each of the four different polarization states; a raw bit generator configured to convert the quantum system into a single photon and detect the single photon in either a first polarization state that corresponds to a first binary number or a second polarization state that corresponds to a second binary number; and a system control configured to receive signals from the polarization states analyzer and the raw bit generator, the signals corresponding to the polarization states, and output a random number based on the first and second polarization states of the single photon.
摘要:
Various embodiments of the present invention are directed to color-center-based quantum computer architectures that are both scalable and defect tolerant and to methods for fabricating color-center-based quantum computer architectures. In one embodiment of the present invention, a node of a quantum computer architecture comprises a first photonic device configured to transmit electromagnetic waves, a color center embedded in diamond and coupled to the first photonic device, and a switch located between the first photonic device and a bus waveguide. The switch can be configured to selectively control transmission of electromagnetic waves between the bus waveguide and the color center.
摘要:
Various embodiments of the present invention are directed optical-based quantum random number generators. In one embodiment, a quantum random number generator includes an input state generator that generates a first optical quantum system and a second optical quantum system in an entangled state, a detector that measures the state of the first optical quantum system and the state of the second optical quantum system, and a system control that evaluates a result obtained from measuring the state of the first optical quantum system and state of the second optical quantum system to determine whether or not to append a number associated with the result to the sequence of random numbers. The quantum random number generator also include state controllers, located between the input state generator and the detector, that are operationally controlled by the system control to maintain the entangled state, based on results obtained from previous measurements performed on the first and second optical quantum systems.
摘要:
Various embodiments of the present invention are directed to methods for coupling semiconductor-based photonic devices to diamond. In one embodiment of the present invention, a method for coupling a photonic device with a diamond structure comprises embedding the diamond structure in a first substrate, where the first substrate comprises a first transparent material. The photonic device is formed in a semiconductor material, which is supported by a second substrate. An intermediate structure is formed by depositing a second transparent material over the photonic device. The second transparent material may have substantially the same refractive index as the first transparent material. The intermediate structure is then separated from the second substrate, and the intermediated structure is adhered to the first substrate so that the photonic device optically couples with the diamond structure.
摘要:
Various embodiments of the present invention are directed to methods for coupling semiconductor-based photonic devices to diamond. In one embodiment of the present invention, a method for coupling a photonic device with a diamond structure comprises embedding the diamond structure in a first substrate, where the first substrate comprises a first transparent material. The photonic device is formed in a semiconductor material, which is supported by a second substrate. An intermediate structure is formed by depositing a second transparent material over the photonic device. The second transparent material may have substantially the same refractive index as the first transparent material. The intermediate structure is then separated from the second substrate, and the intermediated structure is adhered to the first substrate so that the photonic device optically couples with the diamond structure.
摘要:
Various embodiments of the present invention are directed to methods and systems for generating random numbers. In one embodiment, a quantum random number generator comprises: a state generator configured to generate a quantum system in a coherent state; a polarization states analyzer configured to project the quantum system onto one of four different polarization states, and detect each of the four different polarization states; a raw bit generator configured to convert the quantum system into a single photon and detect the single photon in either a first polarization state that corresponds to a first binary number or a second polarization state that corresponds to a second binary number; and a system control configured to receive signals from the polarization states analyzer and the raw bit generator, the signals corresponding to the polarization states, and output a random number based on the first and second polarization states of the single photon.
摘要:
Various embodiments of the present invention are directed to quantum-dot-based quantum computer architectures that are scalable and defect tolerant and to methods for fabricating quantum dots in quantum computer architectures. In one embodiment of the present invention, a node of quantum computer architecture comprises a first photonic device supported by a substrate. The quantum computer architecture also includes a number of quantum dots coupled to the first photonic device, and a switch supported by the substrate that controls transmission of electromagnetic waves between a bus waveguide and the quantum dots.
摘要:
Various embodiments of the present invention are directed to methods for coupling semiconductor-based photonic devices to diamond. In one embodiment of the present invention, a photonic device is optically coupled with a diamond structure. The photonic device comprises a semiconductor material and is optically coupled with the diamond structure with an adhesive substance that adheres the photonic device to the diamond structure. A method for coupling the photonic device with the diamond structure is also provided. The method comprises: depositing a semiconductor material on the diamond structure; forming the photonic device in the semiconductor material so that the photonic device couples with the diamond structure; and adhering the photonic device to the diamond structure.