摘要:
A method and system for a color xerographic machine determines a lower bound for the ROS power levels so that color defects are not produced by light attenuation from one or more layers of toner particles on a latent image. The method computes a minimum ROS power level for the photoreceptor at its maximum and minimum charge levels. The minimum ROS power level is the level at which the discharge voltage does not drop beyond a maximum discharge voltage difference. The difference is related to a toner particle density that affects color reproduction. The minimum ROS power levels for the minimum and maximum photoreceptor charge levels are used to compute a functional relationship for minimum ROS power levels at other photoreceptor charge levels. Thereafter, the minimum ROS power level function may be used to compute minimum ROS power levels for other photoreceptor charge levels. The computed minimum ROS power levels may be used to control the power levels used during color reproduction performed by the machine.
摘要:
A pair of Electronic Voltmeters (ESV) are utilized to control the photoreceptor charging voltage in a Tri-Level imaging apparatus. One of the ESVs is used to control the voltage increases of a charging device. The other ESV is used to monitor the charge level of the charged area image of a Tri-Level image. When a critical value is sensed the control of the charging device is shifted to the ESV that monitors the charged area image level and limits the output from the charging device to a predetermined target value.
摘要:
In a xerographic printer for tri-level highlight color imaging, two electrostatic voltmeters (ESVs) are used to interpolate the electrostatic potential at a particular location along the path of the photoreceptor belt. Anomalous ESV readings, such as would be caused by dirt interfering with the ESV itself as opposed to systemic changes in the whole apparatus, are detected by having the printer enter a "test mode" in which test patches having minimal charge are monitored by the ESVs. The low-charge test patches enable noise related directly to the ESVs to be isolated from other possible sources of noise. The noise which results from ESV malfunctioning is compensated for when the printer returns to operation.
摘要:
Recalculation of electrostatic target values in a tri-level imaging apparatus are utilized to extend the useful life of the photoreceptor (P/R). The increase in residual voltage due to P/R aging which would normally necessitate P/R disposal is obviated by resetting the target voltage for the full ROS exposure when it reaches its exposure limit with current P/R conditions. All contrast voltage targets are then recalculated based on this new target.The new targets are calculated based on current capability of the overall system and the latitude is based on voltage instead of exposure.
摘要:
In a single pass, tri-level imaging apparatus, machine cycle down is initiated when the color developer housing is functioning improperly. The voltage level of the color image prior to its development is read using an electrostatic voltmeter (ESV). The voltage level thereof is also read after development. The difference between these two readings is compared to an arbitrary target value and a machine cycle down is initiated if the difference is greater than the target.
摘要:
The present invention generally relates to an imaging system, and more specifically, a method and apparatus for accurately predicting toner usage and hence toner dispensing requirements in an imaging system. More specifically, the present invention relates to a toner concentration control system for maintaining toner concentration in a developer structure, which is connected to a dispenser containing toner.
摘要:
The present invention generally relates to an imaging system, and more specifically, a method and apparatus for accurately predicting toner usage and hence toner dispensing requirements in an imaging system. More particularly, the present invention relates to a toner concentration control system for maintaining toner concentration in a developer structure, which is connected to a dispenser containing toner.
摘要:
In a single pass tri-level imaging apparatus, a pair of Electrostatic Voltmeters (ESV) are utilized to monitor various control patch voltages to allow for feedback control of Infra-Red Densitometer (IRD) readings.The ESV readings are used to adjust the IRD readings of each toner patch. For the black toner patch, readings of an ESV positioned between two developer housing structures are used to monitor the patch voltage. If the voltage is above target (high development field) the IRD reading is increased by an amount proportional to the voltage error. For the color toner patch, readings using an ESV positioned upstream of the developer housing structures and the dark decay projection to the color housing are used to make a similar correction to the color toner patch IRD readings (but opposite in sign because, for color, a lower voltage results in a higher development field).
摘要:
A single pass tri-level imaging apparatus and method. Compensation for the effects of dark decay on the background voltage, V.sub.Mod, and the color toner patch, V.sub.tc readings is provided using two ESVs (ESV.sub.1 and ESV.sub.2), the former located prior to the color or DAD housing and the latter after it. Since the CAD and black toner patch voltages are measured (using ESV.sub.2) after dark decay and CAD voltage loss have occurred, no compensation for these readings is required. The DAD image voltage suffers little dark decay change over the life of the P/R so the average dark decay can be built into the voltage target.
摘要:
The present invention generally relates to an imaging system, and more specifically, a method and apparatus for accurately predicting toner usage and hence toner dispensing requirements in an imaging system. The toner concentration control system maintains toner concentration in a developer structure, which is connected to a dispenser containing toner. The toner concentration control system includes a toner mass estimator providing a toner mass estimate of the toner mass in the developer structure to be applied to the photoreceptor; a feed forward dispense unit receiving the toner mass estimate and transmitting a feed forward dispense command based on the toner mass estimate; a toner concentration target adjusted by toner age, toner break-in and temperature in the developer structure; a feed back dispense unit receiving the adjusted toner concentration target and transmitting a feedback dispense command; and a total dispense unit receiving the feed forward dispense command and the feedback dispense command, and outputting total dispense command to the dispenser, which dispenses the toner to the developer structure in accordance with the total dispense command.