Abstract:
A scanning laser having a wavelength compatible with a coating binder so as to cure it as the laser scans and irradiates the coating on a moving web. A system and method for curing flakes by providing a scanning laser which scans across a moving coated substrate in a magnetic field allows images to be formed as magnetically aligned flakes are cured into a fixed position. The images have regions of cured aligned flakes. The scanning laser cures the magnetically aligned flakes within it region it irradiates. Alternatively an array of lasers can be used wherein individual lasers can be switched on and off to fix irradiated coating as a moving web is moved at a high speed.
Abstract:
An inkjet printer is configured to reduce the settling of magnetic particles in magnetic ink. The inkjet printer is configured to eject magnetic ink and black ink in areas where the corresponding image data only has black ink pixels. The printing of the magnetic ink in the black ink areas helps prevent the magnetic particles in the magnetic ink from settling.
Abstract:
A scanning laser having a wavelength compatible with a coating binder so as to cure it as the laser scans and irradiates the coating on a moving web. A system and method for curing flakes by providing a scanning laser which scans across a moving coated substrate in a magnetic field allows images to be formed as magnetically aligned flakes are cured into a fixed position. The images have regions of cured aligned flakes. The scanning laser cures the magnetically aligned flakes within it region it irradiates. Alternatively an array of lasers can be used wherein individual lasers can be switched on and off to fix irradiated coating as a moving web is moved at a high speed.
Abstract:
A method of forming a security device is disclosed wherein a magnetically aligned pigment coating coated on a first substrate upon a release layer is hot stamped onto another substrate or object. Multiple patches with aligned magnetic flakes can be oriented differently in the form of a patch work or mosaic. For example, a region of stamped aligned flakes having the flakes oriented in a North-South orientation can be stamped onto one region of an object or substrate and another region of stamped same flakes removed from a same substrate can be stamped onto a same object oriented in an E-W orientation. By first aligning and curing flakes onto a releasable substrate, these flakes can be stamped in various shapes and sizes of patches to be adhesively fixed to another substrate or object.
Abstract:
A cartridge used for image formation is detachably accommodated in a main body of an image forming apparatus. A cartridge determining unit determines a cartridge type, which is a type of the cartridge, and a print-job determining unit determines a print job type, which is a type of a print job received from an external device. If the print job type and the cartridge type do not match, an inhibiting unit inhibits an image formation process.
Abstract:
A process of MICR and non-MICR electrostatic magnetic imaging of two independent electrostatic latent images including forming a first electrostatic latent image in a MICR printing apparatus; developing the first electrostatic latent image by contacting the first electrostatic latent image with a MICR toner to produce a developed MICR toner image; transferring the developed MICR toner image onto a check; forming a second electrostatic latent image in a non-MICR printing apparatus; developing the second electrostatic latent image by contacting the second electrostatic latent image with a non-MICR toner to produce a developed non-MICR image; transferring the developed non-MICR toner image to the check; and fusing the developed MICR toner image and the developed non-MICR toner image to the check.
Abstract:
Development systems and methods for developing using magnetic toner are disclosed. The present invention further discloses developers used in development systems as well as the toner used in developer for magnetic ink character recognition printing. With respect to the development system, a development system is disclosed which includes a supply of dry developer mixture which contains magnetic toner particles and hard magnetic carrier particles. The development system further includes a non-magnetic, cylindrical shell for transporting the developer between the supply and the development zone, wherein the shell can be rotatable or stationary. A rotating magnetic core of a pre-selected magnetic field strength and means for rotating at least the magnetic core to provide for the transport of the toner particles from the shell to an electrostatic image also provided as part of the development system. A method for developing electrostatic image with magnetic toner is further disclosed, for example, involving the above-described development system. Magnetic toner particles having a low magnetic loading such as on the order of 28% by weight or less, based on the weight of the toner are further described wherein these magnetic toners can include a spacing agent on the surface of the magnetic toner particles. A developer is further disclosed which contains the magnetic toner particles of the present invention with hard magnetic carrier particles. Other developer compositions are also described.
Abstract:
Development systems and methods for developing using magnetic toner are disclosed. The present invention further discloses developers used in development systems as well as the toner used in developer for magnetic ink character recognition printing. With respect to the development system, a development system is disclosed which includes a supply of dry developer mixture which contains magnetic toner particles and hard magnetic carrier particles. The development system further includes a non-magnetic, cylindrical shell for transporting the developer between the supply and the development zone, wherein the shell can be rotatable or stationary. A rotating magnetic core of a pre-selected magnetic field strength and means for rotating at least the magnetic core to provide for the transport of the toner particles from the shell to an electrostatic image also provided as part of the development system. A method for developing electrostatic image with magnetic toner is further disclosed, for example, involving the above-described development system. Magnetic toner particles having a low magnetic loading such as on the order of 28% by weight or less, based on the weight of the toner are further described wherein these magnetic toners can include a spacing agent on the surface of the magnetic toner particles. A developer is further disclosed which contains the magnetic toner particles of the present invention with hard magnetic carrier particles. Other developer compositions are also described.
Abstract:
Development systems and methods for developing using magnetic toner are disclosed. The present invention further discloses developers used in development systems as well as the toner used in developer for magnetic ink character recognition printing. With respect to the development system, a development system is disclosed which includes a supply of dry developer mixture which contains magnetic toner particles and hard magnetic carrier particles. The development system further includes a non-magnetic, cylindrical shell for transporting the developer between the supply and the development zone, wherein the shell can be rotatable or stationary. A rotating magnetic core of a pre-selected magnetic field strength and means for rotating at least the magnetic core to provide for the transport of the toner particles from the shell to an electrostatic image also provided as part of the development system. A method for developing electrostatic image with magnetic toner is further disclosed, for example, involving the above-described development system. Magnetic toner particles having a low magnetic loading such as on the order of 28% by weight or less, based on the weight of the toner are further described wherein these magnetic toners can include a spacing agent on the surface of the magnetic toner particles. A developer is further disclosed which contains the magnetic toner particles of the present invention with hard magnetic carrier particles. Other developer compositions are also described.
Abstract:
In a multifunctional printing method and printing system, printed material is checked, verified and tracked. For that purpose different test equipments are located in-line with a printing line. Magnetic information being printed by a printing station onto the recording carrier using magnetic ink character readable toner may be in-line tested by a magnetic test equipment, which reads information from the magnetic recording zone on the carrier. Optical information may be tested by an in-line mounted optical test equipment, respectively. Further in-line test equipment is proposed such as a laser bar code scanner and an address reader. The printing line may have additional devices such as print preprocessing unwinders or print postprocessing stackers, folders or cutters.