Abstract:
Articulation devices, systems, methods for articulation, and methods for fabricating articulation structures will often include simple balloon arrays, with inflation of the balloons interacting with elongate skeletal support structures so as to locally alter articulation of the skeleton. The balloons can be mounted to a substrate of the array, with the substrate having channels that can direct inflation fluid to a subset of the balloons. The articulation array structure may be formed using simple planar 3-D printing, extrusion, and/or micromachining techniques. The skeleton may comprise a simple helical coil, and the array can be used to locally deflect or elongate an axis of the coil under control of a processor. Inflation fluid may be directed to the balloons from an inflation fluid reservoir of an inflation system, with the inflation system preferably including valves controlled by the processor. The articulation structures can be employed in minimally invasive medical catheter systems, and also for industrial robotics, for supporting imaging systems, for entertainment and consumer products, and the like.
Abstract:
Fluid control devices, systems, and methods are useful for articulating catheters and other elongate flexible structures. A modular manifold architecture includes plate-mounted valves to facilitate fluid communication along a plurality of fluid channels included in one or more multi-lumen shafts for articulating actuators comprising balloons within a balloon array, with the balloons often mounted on two or more extruded multi-lumen shafts. Valve/plate modules can be assembled in an array, and a proximal interface of the shaft(s) may have ports for accessing the balloon channels distributed along an axis of the interface. By aligning and engaging the proximal interface with a receptacle that traverses the plates of the manifold assembly, the ports can be quickly and easily sealed to associated channels of the various valve/plate modules using a quick-disconnect fitting.
Abstract:
Catheter-supported therapeutic and diagnostic tools can be introduced into a patient body with a sheath slidably disposed over the tool. Once the tool is aligned with a target tissue, a fluid-driven actuator can move the sheath axially from over the tool, for example, to allow a stent, stent-graft, prosthetic valve, or the like to expand radially within the cardiovascular system, without having to transmit large deployment forces along the catheter shaft and sheath from outside the patient. Well-behaved articulation structures will often include simple balloon arrays, with inflation of the balloons interacting with elongate skeletal support structures so as to improve articulation behavior of the skeleton. The array can be used to improve uniformity of bending along a segment of a flexible body such as a catheter. The articulation improvement structures can be employed in minimally invasive medical catheter systems, and also for industrial continuum robotics, for supporting imaging systems, for entertainment and consumer products, and the like.
Abstract:
User interface devices, systems, and methods can be used for selectively bending of, altering the bend characteristics of, and/or altering the lengths of catheter bodies, guidewires, steerable trocars, and other flexible structures inserted into a patient during use. Optionally, a housing is coupled to a proximal end of a catheter, and movement of the housing by a hand of a system user is sensed and used as a movement command for articulation of the catheter. Alternatively, a sensor can be coupled to an elongate flexible body flexing outside of the patient so as to alter bending of a catheter within the patient. Movements generated through a combination of manual manipulation and powered articulations are facilitated.
Abstract:
Medical devices, systems, and methods provide improved control over the flexing of an articulated catheter adjacent a therapeutic or diagnostic tool by laterally bending the catheter so as to anchor an articulated portion of the catheter locally relative to an internal tissue site. Alternative embodiments may be used for a wide variety of non-medical applications, including with borescope systems and for other industrial applications.
Abstract:
Articulation devices, systems, methods for articulation, and methods for fabricating articulation structures will often include simple balloon arrays, with inflation of the balloons interacting with elongate skeletal support structures so as to locally alter articulation of the skeleton. The balloons can be mounted to a substrate of the array, with the substrate having channels that can direct inflation fluid to a subset of the balloons. The articulation array structure may be formed using simple planar 3-D printing, extrusion, and/or laser micromachining techniques. The skeleton may comprise a simple helical coil or interlocking helical channels, and the array can be used to locally deflect or elongate an axis of the coil under control of a processor. Liquid inflation fluid may be directed to the balloons from an inflation fluid canister, and may vaporize within the channels or balloons of the articulation system, with the inflation system preferably including valves controlled by the processor. The articulation structures can be employed in minimally invasive medical catheter systems, and also for industrial robotics, for supporting imaging systems, for entertainment and consumer products, and the like.