摘要:
A distributed simulation system is composed of simulator stations linked over a network that each renders real-time video imagery for its user from scene data stored in its data storage. The simulation stations are each connected with a physics farm that manages the virtual objects in the shared virtual environment based on their physical attribute data using physics engines, including an engine at each simulation station. The physics engines of the physics farm are assigned virtual objects so as to reduce the effects of latency, to ensure fair fight requirements of the system, and, where the simulation is of a vehicle, to accurately model the ownship of the user at the station. A synchronizer system is also provided that allows for action of simulated entities relying on localized closed loop controls to cause the entities to meet specific goal points at specified system time points.
摘要:
A distributed simulation system is composed of simulator stations linked over a network that each renders real-time video imagery for its user from scene data stored in its data storage. The simulation stations are each connected with a physics farm that manages the virtual objects in the shared virtual environment based on their physical attribute data using physics engines, including an engine at each simulation station. The physics engines of the physics farm are assigned virtual objects so as to reduce the effects of latency, to ensure fair fight requirements of the system, and, where the simulation is of a vehicle, to accurately model the ownship of the user at the station. A synchronizer system is also provided that allows for action of simulated entities relying on localized closed loop controls to cause the entities to meet specific goal points at specified system time points.
摘要:
A distributed simulation system is composed of simulator stations linked over a network that each renders real-time video imagery for its user from scene data stored in its data storage. The simulation stations are each connected with a physics farm that manages the virtual objects in the shared virtual environment based on their physical attribute data using physics engines, including an engine at each simulation station. The physics engines of the physics farm are assigned virtual objects so as to reduce the effects of latency, to ensure fair fight requirements of the system, and, where the simulation is of a vehicle, to accurately model the ownship of the user at the station. A synchronizer system is also provided that allows for action of simulated entities relying on localized closed loop controls to cause the entities to meet specific goal points at specified system time points.
摘要:
A distributed simulation system is composed of simulator stations linked over a network that each renders real-time video imagery for its user from scene data stored in its data storage. The simulation stations are each connected with a physics farm that manages the virtual objects in the shared virtual environment based on their physical attribute data using physics engines, including an engine at each simulation station. The physics engines of the physics farm are assigned virtual objects so as to reduce the effects of latency, to ensure fair fight requirements of the system, and, where the simulation is of a vehicle, to accurately model the ownship of the user at the station. A synchronizer system is also provided that allows for action of simulated entities relying on localized closed loop controls to cause the entities to meet specific goal points at specified system time points.
摘要:
A distributed simulation system is composed of simulator stations linked over a network that each renders real-time video imagery for its user from scene data stored in its data storage. The simulation stations are each connected with a physics farm that manages the virtual objects in the shared virtual environment based on their physical attribute data using physics engines, including an engine at each simulation station. The physics engines of the physics farm are assigned virtual objects so as to reduce the effects of latency, to ensure fair fight requirements of the system, and, where the simulation is of a vehicle, to accurately model the ownship of the user at the station. A synchronizer system is also provided that allows for action of simulated entities relying on localized closed loop controls to cause the entities to meet specific goal points at specified system time points.
摘要:
A distributed simulation system is composed of simulator stations linked over a network that each renders real-time video imagery for its user from scene data stored in its data storage. The simulation stations are each connected with a physics farm that manages the virtual objects in the shared virtual environment based on their physical attribute data using physics engines, including an engine at each simulation station. The physics engines of the physics farm are assigned virtual objects so as to reduce the effects of latency, to ensure fair fight requirements of the system, and, where the simulation is of a vehicle, to accurately model the ownship of the user at the station. A synchronizer system is also provided that allows for action of simulated entities relying on localized closed loop controls to cause the entities to meet specific goal points at specified system time points.
摘要:
A steel plate with a low yield ratio and high toughness. The steel plate comprises components of, by weight: C (0.05-0.08%), Si (0.15-0.30%), Mn (1.55-1.85%), P (less than or equal to 0.015%), S (less than or equal to 0.005%), Al (0.015-0.04%), Nb (0.015-0.025%), Ti (0.01-0.02%), Cr (0.20-0.40%), Mo (0.18-0.30%), N (less than or equal to 0.006%), O (less than or equal to 0.004%), Ca (0.0015-0.0050%), and Ni (less than or equal to 0.40%), a ratio of Ca to S being greater than or equal to 1.5, and the residual being Fe and inevitable impurities.
摘要:
A steel plate with a low yield ratio and high toughness. The steel plate comprises components of, by weight: C (0.05-0.08%), Si (0.15-0.30%), Mn (1.55-1.85%), P (less than or equal to 0.015%), S (less than or equal to 0.005%), Al (0.015-0.04%), Nb (0.015-0.025%), Ti (0.01-0.02%), Cr (0.20-0.40%), Mo (0.18-0.30%), N (less than or equal to 0.006%), O (less than or equal to 0.004%), Ca (0.0015-0.0050%), and Ni (less than or equal to 0.40%), a ratio of Ca to S being greater than or equal to 1.5, and the residual being Fe and inevitable impurities.