摘要:
An optical device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
摘要:
A method for fabricating optical devices comprises the steps of preparing a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or be curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may crossover one another and be in proximate relationship along a region of each. As a result, three dimensional optical devices are formed avoiding conventional techniques of layering on a single substrate wafer. Optical crossover angles may be reduced, for example, to thirty degrees from ninety degrees saving substrate real estate. Recessed areas may be provided in one or the other substrate surface reducing crosstalk in a completed three dimensional crossover device. Three dimensional optical couplers may comprise waveguides of identical or dissimilar characteristics. Moreover, three dimensional optical switches may be formed using the proposed flip and bond assembly process.
摘要:
A method for fabricating an optical device wherein the device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
摘要:
A method for fabricating optical devices comprises the steps of preparing a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or be curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may crossover one another and be in proximate relationship along a region of each. As a result, three dimensional optical devices are formed avoiding conventional techniques of layering on a single substrate wafer. Optical crossover angles may be reduced, for example, to thirty degrees from ninety degrees saving substrate real estate. Recessed areas may be provided in one or the other substrate surface reducing crosstalk in a completed three dimensional crossover device. Three dimensional optical couplers may comprise waveguides of identical or dissimilar characteristics. Moreover, three dimensional optical switches may be formed using the proposed flip and bond assembly process.
摘要:
A four-port wavelength-selective crossbar switch generates an add/drop wavelength signal from a wave division multiplexed (WDM) signal using a plurality of double-sided reflectors that selectively reflects a selected wavelength channel signal of the WDM signal through optical circulators to provide low crosstalk between the dropped and added wavelength signals. The switch also reduces the number of WDM MUX-DEMUX required to one half that compared to a traditional approach. Furthermore, the switch can be designed to be wavelength cyclic with individual free spectral ranges that can be independently set to either through or add/drop states.
摘要:
A method for fabricating an optical device wherein the device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
摘要:
A method and a system in which selected wavelengths of a wavelength division multiplexed (WDM) signal are modulated with multicast data for multicasting data services on an optical network. The WDM signal is received from a hub node of the optical network, such as a unidirectional ring network or a bi-directional ring network. A four-port wavelength crossbar switch (4WCS) selectably switches selected wavelengths from the optical network to a modulator loop. The modulator loop includes a multicast modulator that modulates the selected plurality of wavelengths with the multicast data. Each modulated wavelength is then switched back to the optical network by the 4WCS switch, and sent to a plurality of subscriber nodes of the optical network. This architecture allows a facility provider to be physically separated from a content provider, and affords the flexibility of selectively delivering multicast content to individual subscribers.
摘要:
A method for fabricating optical devices comprises the steps of preparing a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or be curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may crossover one another and be in proximate relationship along a region of each. As a result, three dimensional optical devices are formed avoiding conventional techniques of layering on a single substrate wafer. Optical crossover angles may be reduced, for example, to thirty degrees from ninety degrees saving substrate real estate. Recessed areas may be provided in one or the other substrate surface reducing crosstalk in a completed three dimensional crossover device. Three dimensional optical couplers may comprise waveguides of identical or dissimilar characteristics. Moreover, three dimensional optical switches may be formed using the proposed flip and bond assembly process.
摘要:
A system for providing high connectivity communications over a packet-switched optical ring network comprises a core optical ring having at least one node, the node being coupled to a subtending system by an optical crossbar switch, a source for generating a set of packets, a stacker for forming a first composite packet from the set of serial packets, the stacker coupled to the optical crossbar switch, and the stacker further coupled to the source for generating the set of packets, the first composite packet being parallel packets in a single photonic time slot, the first composite packet to be added to the core optical ring in a vacant photonic time slot via the optical crossbar switch, a second composite packet propagating on the core optical ring destined to be dropped at the node for further distribution on the subtending system via the optical crossbar switch, an unstacker for serializing the second composite packet dropped at the node, the unstacker coupled to the optical crossbar switch and a detector for distributing the serialized packets to a further destination by the subtending system. The source for generating the set of packets may be generated, for example, serially by a tunable laser or may be generated, for example, in parallel by an array of lasers.
摘要:
The present invention provides a method for increasing the accuracy of measurement of mean differential group delay (DGD) from the polarization mode dispersion (PMD) in optical fiber. The method includes a systematic correction to mean-square DGD measured with any conventional mean to minimize systematic error caused by finite source bandwidth. The method further includes a systematic correction to the measurement of mean DGD and mean square DGD from statistics of the second-order PMD (SOPMD) obtained with frequency domain PMD-measuring apparatus. The probability density function (PDF) of either the vector or scalar SOPMD is applied, depending on which quantity is measured. The systematic correction is made to minimize the systematic error in estimating mean DGD, caused by finite source bandwidth, to achieve a two-fold reduction of the measurement variance equivalent to doubling the source bandwidth.