摘要:
A refrigeration circuit has a mono- or multi-component refrigerant, especially CO2, circulating therein, said refrigeration circuit enabling an transcritical operation, said refrigeration circuit comprising, in the direction of refrigerant flow, a compressor unit, a condenser/gascooler, a high pressure control valve, a collecting container, and at least one evaporator having an expansion device connected upstream thereof, wherein a flashgas line having a medium pressure control valve arranged therein is provided between an upper portion of the collecting container and the suction line leading to the compressor unit, wherein a temperature, pressure or liquid level sensor is provided in or at the collecting container, wherein a bypass line having a medium pressure holding valve arranged therein is provided connecting the line between the condenser/gascooler and the high pressure control valve to the line between the collecting container and the expansion device(s), and wherein a control unit is provided said control unit being configured to open the medium pressure holding valve when the temperature or pressure in the collecting container sensed by the sensor falls below a predetermined threshold or the liquid level in the collecting container sensed by the sensor exceeds a predetermined threshold, such that the medium pressure is prevented from decreasing.
摘要:
A compressor (2) for a refrigeration cycle according to the invention comprises an inlet port (6), a compression element (10), an outlet port (18), wherein in operation a refrigerant flow (20) of a gaseous refrigerant carrying an amount of oil circulates through the inlet port (6), the compression element (10) and the outlet port (18), and an oil sump (8) in which part of the oil carried by the gaseous refrigerant collects. An oil circulation rate enhancement feature (16) is provided being configured so as to direct oil from the oil sump (8) to the refrigerant flow (20), when the oil in the oil sump (8) exceeds a predetermined oil sump level (24).
摘要:
A thermoelectric effects materials based energy transduction device, for selectively providing conversions between electrical and thermal energies having interleaved n-type conductivity material layers having thermoelectric effects properties and a first plurality of p-type conductivity material layers each having thermoelectric effects properties. There is a first plurality of passageway structures each being thermally conductive and each having passageways therethrough extending between two sides thereof with such a passageway structure from this first plurality thereof positioned between members of each overlapped pair of succeeding layers.
摘要:
An expensive expansion device may be eliminated in favor of a less expensive pressure regulator in a CO2 vapor compression system such as is used in a bottle cooler or small-capacity air conditioner, refrigerator, or other system.
摘要:
A system and method satisfies temperature and pressure requirements of solid oxide fuel cell system 10 in a manner that increases the overall efficiency and decreases the overall weight of system 10. The system and method include a secondary blower 30 for boosting air stream pressure level sufficient for operation of a reformer 12 that is designed to minimize pressure drop; an integrated heat exchanger 18 for recovering heat from exhaust 36 and comprising multiple flow fields 18A, 18B, 18C for ensuring inlet temperature requirements of a solid oxide fuel cell 14 are met; and a thermal enclosure 46 for separating hot zone 48 components from cool zone 50 components for increasing thermal efficiency of the system and better thermal management.
摘要:
A refrigeration system includes a compressor for driving a refrigerant along a flow path in at least a first mode of system operation; a first heat exchanger along the flow path downstream of the compressor in the first mode; a second heat exchanger along the flow path upstream of the compressor in the first mode; and a pressure regulator or expansion device in the flow path downstream of the first heat exchanger and upstream of the second heat exchanger in the first mode, wherein the first heat exchanger is positioned within a housing which defines a flow path for heat exchange fluid and the housing defines a zone of reduced flow area along the flow path, and wherein the first heat exchanger is positioned in the zone of reduced flow area.
摘要:
Carbon dioxide refrigerant is circulated through a vapor compression system including a compressor, a gas cooler, an expansion device, and an evaporator. Carbon dioxide is extracted from a vehicle exhaust stream that includes combustion products of burned hydrocarbon fuel. The extracted carbon dioxide is used to supplement the initial supply of carbon dioxide refrigerant to maintain a desired (or predetermined) level of refrigerant in the system. The system includes a sensor assembly that measures and monitors the amount of refrigerant in the system. In one example, the extracted carbon dioxide is automatically added to the system from a storage tank when a sensor detects that the amount of carbon dioxide refrigerant in the system is below a threshold value. In another example, the extracted carbon dioxide is directly added to the system, and the carbon dioxide refrigerant is purged from the system when a sensor detects that the amount of carbon dioxide in the system exceeds a threshold value.
摘要:
A valve located at the exit of at least one of two circuits in a gas cooler in a vapor compression system controls the high pressure of the system. The high pressure of the system can be regulated by controlling the actuation of the valve. Closing the valve will accumulate and store charge in the gas cooler, increasing the pressure in the gas cooler. Opening the valve will release charge and reduce the gas cooler pressure. By controlling the actuation of the valve, the high pressure component of the system can be regulated, also regulating the enthalpy of the system to achieve optimal efficiency and/or capacity. Carbon dioxide is preferably used as the refrigerant.
摘要:
A heat pump system, utilizing a multi-component refrigerant blend in which a low pressure component is zeotropic with respect to the remainder of the blend, separates the low pressure component by rectification to enhance heating capability in low ambient temperatures. Vapor is separated from liquid in the effluent of the condenser of a heat pump, at a pressure in equilibrium at a temperature midway between the evaporator and condenser effluent temperatures, the vapor being applied to an auxiliary inlet at a mid pressure point in the compression stroke of the compressor.
摘要:
A heat pump, and in particular a heat pump for heating a hot water supply is provided with an improved defrost mode. The defrost mode is actuated to remove frost from an outdoor evaporator that may accumulate during cold weather operation. An algorithm for operation of the defrost mode is developed experimentally by seeking to maximize the heat transfer provided by the refrigerant. A heating system condition is experimentally related to the heat transfer capacity. One then maximizes the average heat transfer capacity to determine the optimum initiation point for the defrost mode. Further, protections are included into the defrost mode. When the heat pump is utilized to heat hot water, methods are provided to prevent the water that remains in the heat exchanger from becoming unduly heated. In one method, the water pump may be periodically operated to move the water. In a second method, a control ensures the discharge pressure of the refrigerant leaving the compressor is reduced, and that the water pump is not stopped until that reduced temperature falls below a predetermined maximum. The temperature reduction is achieved through a dual control loop wherein a temperature that is too high results in a new desired discharge pressure. The control achieves the new desired pressure by controlling the expansion device. In another protection feature, as a control determines that the defrost mode is nearing its end, an evaporator fan is run to remove melted water from the evaporator coils, and also to ensure the refrigerant leaving the evaporator does not reach unduly high pressure or temperatures.