摘要:
A capacitor assembly that is stable under extreme conditions is provided. More particularly, the assembly includes a capacitor element that is positioned within an interior cavity of a housing. The housing includes a base to which the capacitor element is connected. The housing also includes a lid that contains an outer wall from which extends a sidewall. An end of the sidewall is defined by a lip extending at an angle relative to the longitudinal direction and having a peripheral edge located beyond a periphery of the sidewall. The lip is hermetically sealed to the base. In some cases, the peripheral edge of the lip is also coplanar with an edge of the base. The use of such a lip can enable a more stable connection between the components and improve the seal and mechanical stability of the capacitor assembly, thereby allowing it to better function under extreme conditions.
摘要:
A capacitor assembly for use in high voltage and high temperature environments is provided. More particularly, the capacitor assembly includes a capacitor element containing an anodically oxidized porous, sintered body that is coated with a manganese oxide solid electrolyte. To help facilitate the use of the capacitor assembly in high voltage (e.g., above about 35 volts) and high temperature (e.g., above about 175° C.) applications, the capacitor element is enclosed and hermetically sealed within a housing in the presence of a gaseous atmosphere that contains an inert gas.
摘要:
A capacitor assembly that is stable under extreme conditions is provided. More particularly, the assembly includes a capacitor element that is positioned within an interior cavity of a housing. The housing includes a base to which the capacitor element is connected. The housing also includes a lid that contains an outer wall from which extends a sidewall. An end of the sidewall is defined by a lip extending at an angle relative to the longitudinal direction and having a peripheral edge located beyond a periphery of the sidewall. The lip is hermetically sealed to the base. In some cases, the peripheral edge of the lip is also coplanar with an edge of the base. The use of such a lip can enable a more stable connection between the components and improve the seal and mechanical stability of the capacitor assembly, thereby allowing it to better function under extreme conditions.
摘要:
A capacitor assembly for use in high voltage and high temperature environments is provided. More particularly, the capacitor assembly includes a capacitor element containing an anodically oxidized porous, sintered body that is coated with a manganese oxide solid electrolyte. To help facilitate the use of the capacitor assembly in high voltage (e.g., above about 35 volts) and high temperature (e.g., above about 175° C.) applications, the capacitor element is enclosed and hermetically sealed within a housing in the presence of a gaseous atmosphere that contains an inert gas.
摘要:
A wet electrolytic capacitor that includes a porous anode body containing a dielectric layer, a cathode containing a metal substrate on which is disposed a conductive polymer coating, and an electrolyte is provided. The conductive polymer coating is in the form of a dispersion of particles having a relatively small size, such as an average diameter of from about 1 to about 500 nanometers, in some embodiments from about 5 to about 400 nanometers, and in some embodiments, from about 10 to about 300 nanometers. The relatively small size of the particles used in the coating increases the surface area that is available for adhering to the metal substrate, which in turn improves mechanical robustness and electrical performance (e.g., reduced equivalent series resistance and leakage current). Another benefit of employing such a dispersion for the conductive polymer coating is that it may be able to better cover crevices of the metal substrate and improve electrical contact.
摘要:
A wet electrolytic capacitor including a porous anode body containing a dielectric layer, a cathode containing a metal substrate on which is disposed a conductive polymer coating, and an electrolyte is provided. The conductive polymer coating is in the form of a dispersion of particles having an average diameter of from about 1 to about 500 nanometers, in some embodiments from about 5 to about 400 nanometers, and in some embodiments, from about 10 to about 300 nanometers. The relatively small size of the particles used in the coating increases the surface area that is available for adhering to the metal substrate, which in turn improves mechanical robustness and electrical performance (e.g., reduced equivalent series resistance and leakage current). Another benefit of employing such a dispersion for the conductive polymer coating is that it may be able to better cover crevices of the metal substrate and improve electrical contact.
摘要:
An integrated capacitor assembly that contains at least two solid electrolytic capacitor elements electrically connected to common anode and cathode terminations is provided. The capacitor elements contain an anode, a dielectric coating overlying the anode that is formed by anodic oxidation, and a conductive polymer solid electrolyte overlying the dielectric layer. The capacitor elements are spaced apart from each other a certain distance such that a resinous material can fill the space between the elements. In this manner, the present inventors believe that the resinous material can limit the expansion of the conductive polymer layer to such an extent that it does not substantially delaminate from the capacitor element. In addition to possessing mechanical stability, the capacitor assembly also possesses a combination of good electrical properties, such as low ESR, high capacitance, and a high dielectric breakdown voltage.
摘要:
A solid electrolytic capacitor capable of exhibiting stable electrical properties is provided. The capacitor contains an oxidized anode and a conductive polymer coating overlying the anode. The conductive polymer coating contains multiple layers formed from a dispersion of pre-polymerized conductive polymer particles. The present inventors have surprisingly discovered that capacitors formed from such conductive polymer dispersions can operate at high voltages and achieve good electrical performance at relatively high humidity and/or temperature levels and that the problem of layer delamination may be overcome by carefully controlling the conductive polymer coating configuration and the manner in which it is formed. Namely, the coating contains a first layer hat only partially covers the anode so that the gaseous bubbles generated within the first layer can escape via the uncoated portion without tearing away portions of the polymer layer, minimizing formation of surface inhomogeneities that could lead to delamination.
摘要:
An integrated capacitor assembly that contains at least two solid electrolytic capacitor elements electrically connected to common anode and cathode terminations is provided. The capacitor elements contain an anode, a dielectric coating overlying the anode that is formed by anodic oxidation, and a conductive polymer solid electrolyte overlying the dielectric layer. The capacitor elements are spaced apart from each other a certain distance such that a resinous material can fill the space between the elements. In this manner, the present inventors believe that the resinous material can limit the expansion of the conductive polymer layer to such an extent that it does not substantially delaminate from the capacitor element. In addition to possessing mechanical stability, the capacitor assembly also possesses a combination of good electrical properties, such as low ESR, high capacitance, and a high dielectric breakdown voltage.
摘要:
A solid electrolytic capacitor that includes an anode body, a dielectric overlying the anode body, a solid electrolyte that contains one or more conductive polymers and overlies the dielectric, and an external coating that overlies the solid electrolyte, is provided. The external coating includes at least one carbonaceous layer (e.g., graphite) and at least one metal layer (e.g., silver). In addition to the aforementioned layers, the external coating also includes at least one conductive polymer layer that is disposed between the carbonaceous and metal layers. Among other things, such a conductive polymer layer can reduce the likelihood that the carbonaceous layer will delaminate from the solid electrolyte during use. This can increase the mechanical robustness of the part and improve its electrical performance.