Abstract:
A high pressure pumping system for pumping cryogenic liquid from a low pressure holding cylinder to a high pressure gas cylinder (or other high pressure utilization system) includes a high pressure piston pump having a unidirectional flow input and a unidirectional flow output, immersed in the cryogenic liquid in a low pressure pump container that is fed cryogenic liquid from the low pressure holding cylinder, the pressure in said pump container being maintained so that driving the pump piston pumps cryogenic liquid from the bulk tank to the high pressure utilization system.
Abstract:
A container for holding a cryogenic, two constituent liquid, is described. The container has two vent conduits disposed at different altitudes or levels inside the container wherein a first, cryogenic liquid is filled into the container until it vents from the first conduit. Then, a second, cryogenic liquid is filled into the container until the combined liquids vent through the second conduit. The vent conduits are preferably positioned to provide intended percentages of the various constituents comprising the liquid.
Abstract:
A container for low temperature liquefied gas includes inner and outer shells forming a sealed evacuated space around the inner shell to insure low heat conduction from the ambient surroundings through the container to the liquefied gas in the inner shell. The container provides gas at relatively low pressure by drawing the liquefied gas from the inner shell to a heat exchanger where it evaporates and is fed to a user. A vacuum insulated access channel is provided through the shells for a fluid output tube through which the liquefied gas is drawn from the inner shell to the heat exchanger. The channel is formed by a thin wall sealing tube that conducts little heat, because the wall is so thin, sealed to the inner shell and enclosed by a support structure including a thick wall structural tube enclosing the thin wall tube and connected rigidly and sealed to the outer shell for structural support between the shells and also provides an annular space around the thin wall tube that is evacuated. The structural tube also connects securely, but moveably, to the inner shell, via a spacer made of low thermal conductivity material, so that the inner shell can move slightly within the outer shell, but not so much as to break the vacuum seal of the thin wall tube to the inner shell.
Abstract:
A cryogenic fluid Dewar container (10) for supplying a gas mixture to an on-demand external delivery device, such as a regulator and associated facepiece (84) independent of the direction of its gravitational field and spatial orientation of the container, is described. The Dewar container holds a volume of cryogenic fluid (24) as a liquefied-gas at a relatively low pressure. A first endothermic heat energy conduction means (58) is mounted outside the Dewar and vaporizes and warms the cryogenic fluid to form a raised-energy fluid that is moved to an exothermic heat energy conduction means (62) mounted inside the Dewar container, which conducts a portion of the added heat energy to the remaining cryogenic fluid. This causes some of the cryogenic fluid to vaporize and raise the pressure inside the Dewar container. The somewhat re-cooled gas flowing through the exothermic heat energy conduction means moves to a second endothermic heat energy conduction means (80) mounted outside the Dewar, which rewarms the gas to about the ambient temperature before delivering the gas to the on-demand facepiece. An economizer valve (88) is provided to move the liquid and/or gas held inside the inner shell directly to the second endothermic heat energy conduction means when the internal pressure exceeds a predetermined level. In addition, the cryogenic fluid Dewar container of the present invention can be provided inside a cool hostile environment body suit (S) to provide an internal cooling system that freezes some of the humidity inside the suit created by prespiration.
Abstract:
Several high pressure gas cylinders are attached together in a pack, each container having a valve at one end that controls flow of gas from the cylinder and each valve having a removable valve control handle, the cylinders being arranged coextensive and contiguous in the pack with all cylinder valves at the same end of the pack, a gas manifold at that end of the pack having a gas input for each cylinder and a gas output for feeding gas to a utilization device, a gas line from each cylinder valve to one of the manifold inputs and a manifold valve at the manifold output, so arranged that the manifold valve controls gas flow from the pack of cylinders to the utilization device and the cylinder valves control gas flow from each cylinders to the utilization device. In a preferred embodiment, a protective valve cap is provided for each cylinder valve secured to the cylinder and the valve control handle therefor is removable from and attachable to the valve without removing the cap, whereby all cylinder valve control handles in the pack can be removed and the valves are at all times protected by the caps, even while the pack provides gas to the utilization device, and so damage to the valves and/or tampering with the valves is prevented.