Abstract:
In a shape manipulation method, relocation information is received indicative of an intended change in position of a target location on a Bezier shape, the contour of the Bezier shape being governed by control points. In response to the relocation information, new positions are determined for canonical locations on the shape based on predefined intended behaviors of the canonical locations.
Abstract:
One embodiment of the present invention provides a system that determines a background image for a sequence of image frames. During operation, the system receives a sequence of input image-frames, wherein an input image-frame associates pixels with pixel-attributes. The system then computes a labeling, wherein the labeling associates pixels in the output background image with input image-frames in the sequence of input image-frames. Next, the system determines the output background image using the sequence of input image-frames and the labeling.
Abstract:
Methods, systems and apparatus, including computer program products, for processing a computer graphics illustration having pieces of artwork.
Abstract:
Methods and systems, including computer program products, for determining a plurality of color clusters based on a plurality of pixels associated with a color image, the clusters being fewer than the pixels. A grayscale value for each one of a plurality of points in a color space is determined. Each grayscale value is based on a weighted average of target differences between each point and the clusters. Each of the pixels is associated with one or more of the points. A grayscale value for each pixel is identified based on the grayscale value of the associated one or more points.
Abstract:
A digital image that includes first and second regions is processed. An intrinsic color of a given pixel located in an area of interest that is adjacent to at least one of the first and second regions is estimated by extrapolating from colors of multiple pixels in one of the first and second regions and multiple pixels in the other of the two regions.
Abstract:
Systems, methods, and apparatus, including computer program products, are provided for forming composite images. In some implementations, a method is provided. The method includes receiving a set of component images for forming a composite image and defining a first projection for the set of component images corresponding to a first reference frame. The method also includes identifying a plane corresponding to a point of view of the set of component images, where a normal to the plane corresponds to a second reference frame, defining a second projection for the set of component images corresponding to the second reference frame, the second reference frame corresponding to a rotation from the first reference frame defined using the normal of the identified plane, and rendering the composite image according to the second projection.
Abstract:
Methods, systems and apparatus, including computer program products, for processing a computer graphics illustration having pieces of artwork.
Abstract:
A digital image that includes first and second regions is processed. An intrinsic color of a given pixel located in an area of interest that is adjacent to at least one of the first and second regions is estimated by extrapolating from colors of multiple pixels in one of the first and second regions and multiple pixels in the other of the two regions.
Abstract:
A digital image that includes first and second regions is processed. An intrinsic color of a given pixel located in an area of interest that is adjacent to at least one of the first and second regions is estimated by extrapolating from colors of multiple pixels in one of the first and second regions and multiple pixels in the other of the two regions.
Abstract:
Computer programs and computer-implemented methods implement techniques for applying a modification operation to vector objects in an image. These include receiving user input applying a modification operation in an image, identifying one or more vector objects to be affected by the modification operation and changing one or more attribute values for one or more of the attributes of each identified vector object according to the modification operation. The techniques can also include receiving user input selecting one of a plurality of image processing modes, each of the image processing modes defining a method of changing attribute values for of one or more of the attributes.In preferred embodiments, feedback is provided to the user of how attribute values for the attributes of vector objects are changing within the image.