摘要:
A liquid crystal display comprises a plurality of pixels, each pixel comprising three or more sub-pixels. A first sub-pixel of the three or more sub-pixels comprises a first transmissive part that has a first transmissive area, and a first reflective part having a first reflective area. A second sub-pixel comprises a second transmissive part that has a second transmissive area, and a second reflective part that has a second reflective area. A third sub-pixel comprises a third transmissive part that has a third transmissive area, and a third reflective part that has a third reflective area. At least two among the first transmissive area, the second transmissive area, and the third transmissive area are different in size. The first reflective area, the second reflective area, and the third reflective area are equal in size.
摘要:
A liquid crystal display comprises a plurality of pixels, each pixel comprising three or more sub-pixels. A first sub-pixel of the three or more sub-pixels comprises a first transmissive part that has a first transmissive area, and a first reflective part having a first reflective area. A second sub-pixel comprises a second transmissive part that has a second transmissive area, and a second reflective part that has a second reflective area. A third sub-pixel comprises a third transmissive part that has a third transmissive area, and a third reflective part that has a third reflective area. At least two among the first transmissive area, the second transmissive area, and the third transmissive area are different in size. The first reflective area, the second reflective area, and the third reflective area are equal in size.
摘要:
In an embodiment, a computer comprises a liquid crystal display (LCD) operable in a transmissive mode, a reflective mode, and a transflective mode; a display driver coupled to the LCD; one or more processors coupled to the display driver; mode switching logic coupled to the one or more processors and/or to the display driver; one or more electronic input sources coupled to the mode switching logic and providing input signals to the mode switching logic, wherein the input signals represent states of ambient conditions, other computer elements, user input, or user applications of the computer; and the mode switching logic is configured to cause the one or more processors to perform receiving one or more of the input signals; based on the input signals, selecting a particular operational mode for the LCD from among the transmissive mode, the reflective mode, and the transflective mode; causing the LCD to operate in the particular operational mode.
摘要:
Techniques are provided to reduce color shifts in an LCD. A sub-pixel in the LCD may comprise a reflective part and a transmissive part. The reflective and transmissive parts may be covered by one or more retardation films. To reduce color shifts in general and especially in oblique viewing angles, at least one retardation film in the sub-pixel may comprise a slow axis with an elevation angle from a surface of a substrate layer of the LCD.
摘要:
Techniques are provided to drive a normally white or mixed mode LCD with low voltages and low power consumption. A sub-pixel in the LCD may comprise a reflective part and a transmissive part. The cell gap for a liquid crystal layer in the sub-pixel may provide at least a half-wave phase retardation. A driving voltage range with a maximum voltage at a low value may be used to drive the reflective part and the transmissive part of the sub-pixel to various levels of brightness.
摘要:
In an embodiment, a transflective LCD comprises pixels each comprising a first polarizing layer; a second polarizing layer; a first substrate layer and a second substrate layer opposite the first substrate layer; the first and second substrate layers are between the first polarizing layer and the second polarizing layer; a liquid crystal material between the first and second substrate layers; an over-coating layer adjacent to the first substrate layer; the over-coating layer comprises at least one opening for a transmissive part; a remainder of the over-coating layer forms in part a reflective part; a patterned in-cell retarder adjacent to the first substrate layer; the patterned in-cell retarder covers at least a portion of the reflective part; a reflective layer between the over-coating layer and the second substrate layer; the reflective layer substantially covers the reflective part; the patterned in-cell retarder is between the reflective layer and the first substrate layer.
摘要:
In an embodiment, a transflective LCD comprises pixels each comprising a first polarizing layer; a second polarizing layer; a first substrate layer and a second substrate layer opposite the first substrate layer; the first and second substrate layers are between the first polarizing layer and the second polarizing layer; a liquid crystal material between the first and second substrate layers; an over-coating layer adjacent to the first substrate layer; the over-coating layer comprises at least one opening for a transmissive part; a remainder of the over-coating layer forms in part a reflective part; a patterned in-cell retarder adjacent to the first substrate layer; the patterned in-cell retarder covers at least a portion of the reflective part; a reflective layer between the over-coating layer and the second substrate layer; the reflective layer substantially covers the reflective part; the patterned in-cell retarder is between the reflective layer and the first substrate layer.
摘要:
Techniques are provided to drive a normally white or mixed mode LCD with low voltages and low power consumption. A sub-pixel in the LCD may comprise a reflective part and a transmissive part. The cell gap for a liquid crystal layer in the sub-pixel may provide at least a half-wave phase retardation. A driving voltage range with a maximum voltage at a low value may be used to drive the reflective part and the transmissive part of the sub-pixel to various levels of brightness.
摘要:
A liquid crystal display, alone or in combination with any kind of computing device, may comprise a plurality of pixels, each pixel comprising a plurality of sub-pixels, each sub-pixel comprising a transmissive part and a reflective part, wherein a cross sectional area of the reflective part is greater than half of a total cross sectional area of an entire size of that sub-pixel; one or more auxiliary components that are in a non-transmissive part of the sub-pixel and that are configured to provide one or more auxiliary functions that do not affect optical performance of that sub-pixel. In various embodiments the auxiliary components are electronic digital memory logic or drivers; electronic high refresh rate logic or drivers; touch sensor elements, and the display further comprising a touch panel sheet over the pixels; light sensors; photodiodes; photovoltaic solar power generating cells; organic light emitting diodes.
摘要:
Techniques are provided to recycle light from a backlight unit that is otherwise blocked in a reflective part of a pixel in a transflective LCD. The light is redirected into a transmissive part of the pixel and hence enhances light efficiency and luminance of the pixel. The techniques can be used in a transflective LCD that transmits light in a circularly polarized state, or a linearly polarized state.