摘要:
An apparatus for continuously producing polyisocyanate is provided for quickly contacting polyamine and carbonyl chloride in order to suppress an undesirable reaction between polyamine and polyisocyanate so that a by-product can be reduced and the yield of polyisocyanate can be improved. In a circulatory line 7, a material-mixing portion 8, a high-shear pump 3, a reactor 4, a liquid-feeding pump 5 and a cooler 6 are interposed in series along the direction of the flow of a reaction solution, thereby forming a closed line. In this apparatus 1, after polyamine and carbonyl chloride are supplied in the material-mixing portion 8, the reaction solution is sheared by the high-shear pump 3 in a state where the contact of the polyamine with the reaction solution is minimized. Thus, the formation of a urea compound as a by-product can be suppressed and the yield of polyisocyanate can be improved.
摘要:
An apparatus for continuously producing polyisocyanate is provided for quickly contacting polyamine and carbonyl chloride in order to suppress an undesirable reaction between polyamine and polyisocyanate so that a by-product can be reduced and the yield of polyisocyanate can be improved. In a circulatory line 7, a material-mixing portion 8, a high-shear pump 3, a reactor 4, a liquid-feeding pump 5 and a cooler 6 are interposed in series along the direction of the flow of a reaction solution, thereby forming a closed line. In this apparatus 1, after polyamine and carbonyl chloride are supplied in the material-mixing portion 8, the reaction solution is sheared by the high-shear pump 3 in a state where the contact of the polyamine with the reaction solution is minimized. Thus, the formation of a urea compound as a by-product can be suppressed and the yield of polyisocyanate can be improved.
摘要:
A polyisocyanate production method that can allow effective use of hydrogen chloride produced secondarily in a polyisocyanate production process, while allowing reduction of environmental burdens, and a polyisocyanate production system for performing the polyisocyanate production method. After chlorine is allowed to react with carbon monoxide to produce carbonyl chloride in a carbonyl chloride producing reactor, the carbonyl chloride produced in the carbonyl chloride producing reactor is allowed to react with polyamine in an isocyanate producing reactor to produce polyisocyanate. Then, after hydrochloric gas produced secondarily in the isocyanate producing reactor is purified in a hydrogen chloride purifying column, the purified hydrochloric gas is oxidized in a hydrogen chloride oxidizing reactor to produce chlorine. Thereafter, the chlorine thus produced is supplied to the carbonyl chloride producing reactor from a chlorine resupply line, so that it is allowed to react with carbon monoxide to produce carbonyl chloride.
摘要:
A gas treatment apparatus for treating a gas by bringing the gas into contact with a treatment liquid. The gas treatment apparatus includes a gas-liquid contact chamber for a gas-liquid contact of the gas with the treatment liquid, a storage chamber, located over the gas-liquid contact chamber, for storing the treatment liquid, and a treatment liquid supplying unit for supplying the treatment liquid stored in the storage chamber to an inside of the gas-liquid contact chamber with a gravity-drop.
摘要:
A polyisocyanate production method that can allow effective use of hydrogen chloride produced secondarily in a polyisocyanate production process, while allowing reduction of environmental burdens, and a polyisocyanate production system for performing the polyisocyanate production method. After chlorine is allowed to react with carbon monoxide to produce carbonyl chloride in a carbonyl chloride producing reactor, the carbonyl chloride produced in the carbonyl chloride producing reactor is allowed to react with polyamine in an isocyanate producing reactor to produce polyisocyanate. Then, after hydrochloric gas produced secondarily in the isocyanate producing reactor is purified in a hydrogen chloride purifying column, the purified hydrochloric gas is oxidized in a hydrogen chloride oxidizing reactor to produce chlorine. Thereafter, the chlorine thus produced is supplied to the carbonyl chloride producing reactor from a chlorine resupply line, so that it is allowed to react with carbon monoxide to produce carbonyl chloride.
摘要:
A polyisocyanate production method that can allow effective use of hydrogen chloride produced secondarily in a polyisocyanate production process, while allowing reduction of environmental burdens, and a polyisocyanate production system for performing the polyisocyanate production method. After chlorine is allowed to react with carbon monoxide to produce carbonyl chloride in a carbonyl chloride producing reactor, the carbonyl chloride produced in the carbonyl chloride producing reactor is allowed to react with polyamine in an isocyanate producing reactor to produce polyisocyanate. Then, after hydrochloric gas produced secondarily in the isocyanate producing reactor is purified in a hydrogen chloride purifying column, the purified hydrochloric gas is oxidized in a hydrogen chloride oxidizing reactor to produce chlorine. Thereafter, the chlorine thus produced is supplied to the carbonyl chloride producing reactor from a chlorine resupply line, so that it is allowed to react with carbon monoxide to produce carbonyl chloride.
摘要:
A polyisocyanate production system is provided that can stably produce chlorine from hydrogen chloride produced secondarily while reacting stably between carbonyl chloride and polyamine and can perform an effective treatment of the hydrochloric gas produced secondarily. A hydrochloric gas control unit 32 controls a flow-rate control valve 23 to keep constant an amount of hydrogen chloride supplied from a hydrogen chloride purifying tank 4 to a hydrogen chloride oxidation reactor 6 via a second hydrochloric-gas connection line 11 to be constant, and also controls a pressure control valve 22 based on an inner pressure of the hydrogen chloride purifying tank 4 input from a pressure sensor 25 to discharge the hydrochloric gas from the hydrogen chloride purifying tank 4 to the hydrogen chloride absorbing column 5 via a first hydrochloric-gas connection line 10, so as to keep an inner pressure of the hydrogen chloride purifying tank 4 to be constant.
摘要:
A polyisocyanate production system is provided that can stably produce chlorine from hydrogen chloride produced secondarily while reacting stably between carbonyl chloride and polyamine and can perform an effective treatment of the hydrochloric gas produced secondarily. A hydrochloric gas control unit 32 controls a flow-rate control valve 23 to keep constant an amount of hydrogen chloride supplied from a hydrogen chloride purifying tank 4 to a hydrogen chloride oxidation reactor 6 via a second hydrochloric-gas connection line 11 to be constant, and also controls a pressure control valve 22 based on an inner pressure of the hydrogen chloride purifying tank 4 input from a pressure sensor 25 to discharge the hydrochloric gas from the hydrogen chloride purifying tank 4 to the hydrogen chloride absorbing column 5 via a first hydrochloric-gas connection line 10, so as to keep an inner pressure of the hydrogen chloride purifying tank 4 to be constant.
摘要:
Disclosed are a method of producing fine particulate alkali metal niobate in a liquid phase system, wherein the size and shape of particles of the fine particulate alkali metal niobate can be controlled; and fine particulate alkali metal niobate having a controlled shape and size. Specifically disclosed are a method of producing particulate sodium-potassium niobate represented by the formula (1): NaxK(1-x)NbO3 (1), the method including four specific steps, wherein a high-concentration alkaline solution containing Na+ ion and K+ ion is used as an alkaline solution; and particulate sodium-potassium niobate having a controlled shape and size.
摘要:
Provided is a copper anode or a phosphorous-containing copper anode for use in performing electroplating copper on a semiconductor wafer, wherein purity of the copper anode or the phosphorous-containing copper anode excluding phosphorous is 99.99 wt % or higher, and silicon as an impurity is 10 wtppm or less. Additionally provided is an electroplating copper method capable of effectively preventing the adhesion of particles on a plating object, particularly onto a semiconductor wafer during electroplating copper, a phosphorous-containing copper anode for use in such electroplating copper, and a semiconductor wafer comprising a copper layer with low particle adhesion formed by the foregoing copper electroplating.