Abstract:
A first optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from that of the first optical material, and the base has a concavity, and the second optical material is filled in this concavity. A second optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from the first optical material, and the base comprises first and second faces facing each other, a first concavity is formed in the first face and a second concavity is formed in the second face, and the second optical material is filled in the first and second concavities.
Abstract:
A first optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from that of the first optical material, and the base has a concavity, and the second optical material is filled in this concavity. A second optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from the first optical material, and the base comprises first and second faces facing each other, a first concavity is formed in the first face and a second concavity is formed in the second face, and the second optical material is filled in the first and second concavities.
Abstract:
A first optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from that of the first optical material, and the base has a concavity, and the second optical material is filled in this concavity. A second optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from the first optical material, and the base comprises first and second faces facing each other, a first concavity is formed in the first face and a second concavity is formed in the second face, and the second optical material is filled in the first and second concavities.
Abstract:
A first optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from that of the first optical material, and the base has a concavity, and the second optical material is filled in this concavity. A second optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from the first optical material, and the base comprises first and second faces facing each other, a first concavity is formed in the first face and a second concavity is formed in the second face, and the second optical material is filled in the first and second concavities.
Abstract:
A first optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from that of the first optical material, and the base has a concavity, and the second optical material is filled in this concavity. A second optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from the first optical material, and the base comprises first and second faces facing each other, a first concavity is formed in the first face and a second concavity is formed in the second face, and the second optical material is filled in the first and second concavities.
Abstract:
A first optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from that of the first optical material, and the base has a concavity, and the second optical material is filled in this concavity. A second optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from the first optical material, and the base comprises first and second faces facing each other, a first concavity is formed in the first face and a second concavity is formed in the second face, and the second optical material is filled in the first and second concavities.
Abstract:
A first optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from that of the first optical material, and the base has a concavity, and the second optical material is filled in this concavity. A second optical device according to the present invention comprises a base made of a first optical material and a second optical material having a refractive index different from the first optical material, and the base comprises first and second faces facing each other, a first concavity is formed in the first face and a second concavity is formed in the second face, and the second optical material is filled in the first and second concavities.
Abstract:
An optical element and manufacturing method of the present invention prevent the incidence of light on unnecessary portions of the optical element so that stray light and noise are eliminated. The optical element is configured from at least one substrate having a plurality of lens substrates that have embedded lenses made of a material with a higher refractive index than the at least one substrate. A shielding means limits the optical path so that incident light propagates only within a prescribed optical path formed on a light incidence-side or emission-side surface of one of the lens substrates. In addition, the shielding means is formed from an absorptive or reflective film placed in a region outside the prescribed optical path or through machining the region outside the prescribed optical path.
Abstract:
An optical pickup using an optical fiber module which includes optical fibers is provided, which can be small-sized and utilize a light beam from a light source at high efficiency. The optical pickup includes: an optical fiber module 20, in which an optical fiber 10 consists of: a first optical fiber 11 which is a field-distribution converting fiber and a second optical fiber 12 whose core has birefringence, both the optical fibers 11 and 12 are connected to each other at one end thereof, and the laser light beam L emitted from the semiconductor laser 1 is made to enter the other end of the first optical fiber 11; an optical head having at least an objective lens; an optical detector; wherein the optical fiber 10 is used as optical wiring to lead the laser light beam L emitted from the semiconductor laser 1 into the optical head.
Abstract:
An optical pickup device and optical disc apparatus of the present invention include an optical element that prevents the incidence of light on unnecessary portions of the optical element so that stray light and noise are eliminated. The optical element include at least one substrate having a plurality of lens substrates that have embedded lenses made of a material with a higher refractive index than the at least one substrate. A shielding means limits the optical path so that incident light propagates only within a prescribed optical path formed on a light incidence-side or emission-side surface of one of the lens substrates. In addition, the shielding means is formed from an absorptive or reflective film placed in a region outside the prescribed optical path or through machining the region outside the prescribed optical path.