摘要:
A process for producing a SiC ceramic microtube by oxidizing the surface of an organosilicon polymer to become infusible by exposure to an ionizing radiation, extracting the uncrosslinked central portion of the fiber with an organic solvent to make a hollow silicon polymer fiber, and firing it in an inert gas so that it acquires a ceramic nature.
摘要:
An improved process for producing a silicon carbide ceramic micro tubes (SiC micro tube) from a silicon-based polymer fiber by applying an ionizing radiation such that the surface part of the fiber selectively undergoes oxidative crosslinking, extracting the uncrosslinked core part of the fiber with an organic solvent to form a hollow fiber, and firing it in an inert gas is characterized by using a polymer blend of polycarbosilane and polyvinylsilane as the silicon polymer or applying the ionizing radiation to the silicon-based polymer fiber as it is cooled. The two methods may be performed either individually or in combination to produce tubes with their wall thickness controlled at a desired value in the range of 2-10 μm although this has been impossible to achieve in the prior art.
摘要:
An improved process for producing a silicon carbide ceramic micro tubes (SiC micro tube) from a silicon-based polymer fiber by applying an ionizing radiation such that the surface part of the fiber selectively undergoes oxidative crosslinking, extracting the uncrosslinked core part of the fiber with an organic solvent to form a hollow fiber, and firing it in an inert gas is characterized by using a polymer blend of polycarbosilane and polyvinylsilane as the silicon polymer or applying the ionizing radiation to the silicon-based polymer fiber as it is cooled. The two methods may be performed either individually or in combination to produce tubes with their wall thickness controlled at a desired value in the range of 2-10 μm although this has been impossible to achieve in the prior art.
摘要:
There are provided a radiation-proof resin composition that is excellent in mechanical characteristics even after exposure to harsh radiation (with 2.5 MGy), that exhibits a suitable radiation-resistant properties by a small amount of mixed additives, and that can suppress the blooming of the additives, and a radiation-resistant wire/cable. The radiation-resistant resin composition is obtained by adding 0.3 to 1.0 parts by mass of a salicylate-based UV absorber, 0.3 to 5 parts by mass of a benzotriazole-based UV absorber, and 0.3 to 5 parts by mass of a triazine-based UV absorber to 100 parts by mass of a polyolefin-based resin.
摘要:
There are provided a radiation-proof resin composition that is excellent in mechanical characteristics even after exposure to harsh radiation (with 2.5 MGy), that exhibits a suitable radiation-resistant properties by a small amount of mixed additives, and that can suppress the blooming of the additives, and a radiation-resistant wire/cable. The radiation-resistant resin composition is obtained by adding 0.3 to 1.0 parts by mass of a salicylate-based UV absorber, 0.3 to 5 parts by mass of a benzotriazole-based UV absorber, and 0.3 to 5 parts by mass of a triazine-based UV absorber to 100 parts by mass of a polyolefin-based resin.