High-Strength Refractory Fibrous Materials
    1.
    发明申请
    High-Strength Refractory Fibrous Materials 审中-公开
    高强度耐火纤维材料

    公开(公告)号:US20160237595A1

    公开(公告)日:2016-08-18

    申请号:US14931564

    申请日:2015-11-03

    申请人: Dynetics, Inc.

    IPC分类号: D01F9/12 D01F9/127

    摘要: The disclosed materials, methods, and apparatus, provide novel ultra-high temperature materials (UHTM) in fibrous forms/structures; such “fibrous materials” can take various forms, such as individual filaments, short-shaped fiber, tows, ropes, wools, textiles, lattices, nano/microstructures, mesostructured materials, and sponge-like materials. At least four important classes of UHTM materials are disclosed in this invention: (1) carbon, doped-carbon and carbon alloy materials, (2) materials within the boron-carbon-nitride-X system, (3) materials within the silicon-carbon-nitride-X system, and (4) highly-refractory materials within the tantalum-hafnium-carbon-nitride-X and tantalum-hafnium-carbon-boron-nitride-X system. All of these material classes offer compounds/mixtures that melt or sublime at temperatures above 1800° C.—and in some cases are among the highest melting point materials known (exceeding 3000° C.). In many embodiments, the synthesis/fabrication is from gaseous, solid, semi-solid, liquid, critical, and supercritical precursor mixtures using one or more low molar mass precursor(s), in combination with one or more high molar mass precursor(s). Methods for controlling the growth, composition, and structures of UHTM materials through control of the thermal diffusion region are disclosed.

    摘要翻译: 所公开的材料,方法和装置,以纤维形式/结构提供新的超高温材料(UHTM); 这种“纤维材料”可以采取各种形式,例如单丝,短形纤维,丝束,绳索,羊毛,纺织品,格子,纳米/微结构,介观结构材料和海绵状材料。 本发明中公开了至少四种重要类别的UHTM材料:(1)碳,掺杂碳和碳合金材料,(2)硼氮化物-X系统内的材料,(3)硅 - 碳氮化物-X系统和(4)钽 - 铪 - 碳氮化物-X和钽 - 铪 - 碳 - 氮 - 氮化物-x系统内的高难熔材料。 所有这些材料类都提供在高于1800℃的温度下熔化或升华的化合物/混合物,并且在某些情况下是已知的最高熔点材料(超过3000℃)。 在许多实施方案中,合成/制备来自使用一种或多种低摩尔质量前体与一种或多种高摩尔质量前体(s)的气态,固体,半固体,液体,临界和超临界前体混合物 )。 公开了通过控制热扩散区域来控制UHTM材料的生长,组成和结构的方法。

    Low temperature synthesis of semiconductor fibers
    4.
    发明申请
    Low temperature synthesis of semiconductor fibers 有权
    低温合成半导体纤维

    公开(公告)号:US20070003467A1

    公开(公告)日:2007-01-04

    申请号:US11515051

    申请日:2006-09-01

    IPC分类号: C01B33/02

    摘要: This invention presents a process to produce bulk quantities of nanowires of a variety of semiconductor materials. Large liquid gallium drops are used as sinks for the gas phase solute, generated in-situ facilitated by microwave plasma. To grow silicon nanowires for example, a silicon substrate covered with gallium droplets is exposed to a microwave plasma containing atomic hydrogen. A range of process parameters such as microwave power, pressure, inlet gas phase composition, were used to synthesize silicon nanowires as small as 4 nm (nanometers) in diameter and several micrometers long. As opposed to the present technology, the instant technique does not require creation of quantum sized liquid metal droplets to synthesize nanowires. In addition, it offers advantages such as lower growth temperature, better control over size and size distribution, better control over the composition and purity of the nanowires.

    摘要翻译: 本发明提出了生产大量各种半导体材料的纳米线的方法。 大液滴镓滴用作气相溶质的水槽,由微波等离子体原位产生。 为了生长硅纳米线,例如,用镓液滴覆盖的硅衬底暴露于含有原子氢的微波等离子体。 使用微波功率,压力,入口气相组成等一系列工艺参数来合成直径为4nm(纳米)直径和几微米长的硅纳米线。 与本技术相反,本技术不需要产生量子大小的液态金属液滴来合成纳米线。 此外,它具有诸如较低生长温度,更好地控制尺寸和尺寸分布,更好地控制纳米线的组成和纯度等优点。

    Low temperature synthesis of semiconductor fibers
    6.
    发明申请
    Low temperature synthesis of semiconductor fibers 有权
    低温合成半导体纤维

    公开(公告)号:US20030039602A1

    公开(公告)日:2003-02-27

    申请号:US10187460

    申请日:2002-07-01

    摘要: This invention presents a process to produce bulk quantities of nanowires of a variety of semiconductor materials. Large liquid gallium drops are used as sinks for the gas phase solute, generated in-situ facilitated by microwave plasma. To grow silicon nanowires for example, a silicon substrate covered with gallium droplets is exposed to a microwave plasma containing atomic hydrogen. A range of process parameters such as microwave power, pressure, inlet gas phase composition, were used to synthesize silicon nanowires as small as 4 nm (nanometers) in diameter and several micrometers long. As opposed to the present technology, the instant technique does not require creation of quantum sized liquid metal droplets to synthesize nanowires. In addition, it offers advantages such as lower growth temperature, better control over size and size distribution, better control over the composition and purity of the nanowires.

    摘要翻译: 本发明提出了生产大量各种半导体材料的纳米线的方法。 大液滴镓滴用作气相溶质的水槽,由微波等离子体原位产生。 为了生长硅纳米线,例如,用镓液滴覆盖的硅衬底暴露于含有原子氢的微波等离子体。 使用微波功率,压力,入口气相组成等一系列工艺参数来合成直径为4nm(纳米)直径和几微米长的硅纳米线。 与本技术相反,本技术不需要产生量子大小的液态金属液滴来合成纳米线。 此外,它具有诸如较低生长温度,更好地控制尺寸和尺寸分布,更好地控制纳米线的组成和纯度等优点。

    Composite ceramics and method of making the same
    7.
    发明授权
    Composite ceramics and method of making the same 失效
    复合陶瓷及其制作方法

    公开(公告)号:US4923829A

    公开(公告)日:1990-05-08

    申请号:US312300

    申请日:1989-02-17

    摘要: Composite ceramic materials and a method of the same are disclosed, in which a ceramic material mainly containing silicon nitride, and at least one compound selected from a group consisting of nitrides, carbides, borides, silicides, oxides and oxynitrides of elements belonging to IIIa, IIIb, IVa, IBb, Va, VIa and VIII are combined to form a sintered body, and particles and whiskers of the ceramic material and compound are interlocked with each other and fixed so that the sintered body has a porosity of 5 to 30%. In the above composite ceramics, the particle of the compound are coupled with each other through the whisker or particle of the ceramic material. Accordingly, the composite ceramics are small in charge rate of size due to sintering, and are excellent in tenacity, heat resisting property and thermal shock resisting property. Further, the resistivity of the sintered body can be varied by changing the mixture ratio of ceramic material and compound.

    摘要翻译: 公开了复合陶瓷材料及其制造方法,其中主要含有氮化硅的陶瓷材料和选自属于IIIa的元素的氮化物,碳化物,硼化物,硅化物,氧化物和氮氧化物中的至少一种化合物, 将IIIb,IVa,IBb,Va,VIa和VIII组合形成烧结体,并将陶瓷材料和化合物的颗粒和晶须彼此互锁并固定,使得烧结体的孔隙率为5〜30%。 在上述复合陶瓷中,化合物的颗粒通过陶瓷材料的晶须或颗粒相互耦合。 因此,复合陶瓷由于烧结而具有小的电荷率,并且韧性,耐热性和耐热冲击性优异。 此外,可以通过改变陶瓷材料和化合物的混合比来改变烧结体的电阻率。