摘要:
A first substrate on which an optical-waveguide groove is formed and a second substrate. The second substrate is bonded to the plane of the first substrate on which the optical-waveguide groove is formed by a material having a refractive index higher than those of the first substrate and second substrate. The optical-waveguide groove is filled with the material, and the refractive index of the first substrate is different from the refractive index of the second substrate.
摘要:
The apparatus has: a wavelength tunable filter 1; a photoelectric conversion part 2 which converts transmitted light received from the wavelength tunable filter 1 into a received light intensity signal; a received light intensity detecting part 3 which detects the intensity of the received light intensity signal; a signal component detecting part 8 which detects a signal component from the received light intensity signal; a signal intensity detecting part 9 which detects the intensity of the signal component; an intensity variation detecting part 4 which detects an intensity variation in the received light intensity signal which is detected and an intensity variation in the signal component; and a peak position detecting part 5 and a wavelength scanning part 6 which scan and a wavelength to be selected by the wavelength tunable filter 1 based on the two detected variations.
摘要:
In the forward direction, the light from an input fiber is polarized and separated in a polarized light separating and combining element, the separated polarized light is rotated by a polarized light rotating element, dispersed according to wavelength by a wavelength dispersing element, rotated again by the polarized light rotating element, and is further rotated by a phase plate, thereby combining the polarized lights in the polarized light separating and combining element, so that only the light of a desired wavelength is coupled with the optical fiber. In the reverse direction, the light from the output fiber is not coupled with the input fiber, and hence the light propagation direction is defined in one direction in the disclosed optical circuit. A light transmission system and method using this optical circuit is also presented.
摘要:
On one end side of a converging rod lens are provided a first and second input optical fibers and a first and second output optical fibers. On the other end side of the converging rod lens is provided a reflecting mirror. Between the converging lens and the first and second input and output optical fibers is provided a birefringent element for resolving a ray which passes therethrough into an ordinary ray and an extraordinary ray. In the optical paths of the first and second output optical fibers between the converging rod lens and birefringent element is placed a compensator for rotating 45 degrees the plane of polarization of a ray which passes therethrough. The reflecting mirror reflects incident rays from the first and second input optical fibers to the first and second output optical fibers. Between the converging rod lens and the reflecting mirror is provided a magneto-optical element for rotating 22.5 degrees the plane of polarization of a ray which passes therethrough. The rays emitted from the first and second input optical fibers have their planes of polarization rotated 90 degrees by the magneto-optical element and compensator.
摘要:
An input light beam is applied to a diffraction element. The diffraction element is moved relative to a path of the input light beam while the input light beam is diffracted by the diffraction element and is thereby made into a diffracted light beam traveling from the diffraction element. A portion of the diffracted light beam is detected, and an intensity of the received diffracted light beam is also detected. In addition, a peak of the detected intensity of the received diffracted light beam is detected while the diffraction element is moved relative to the path of the input light beam. A position of the diffraction element is detected at which the detected peak of the detected intensity occurs. The position of the diffraction element is controlled on the basis of the detected position at which the detected peak of the detected intensity occurs.
摘要:
A transmitting circuit apparatus has a frequency modulator that performs frequency modulation of a carrier wave with frequency modulation data and outputs the frequency-modulated carrier wave; a sigma-delta modulator which performs sigma delta modulation of amplitude modulation data; and an amplitude modulator that performs amplitude modulation of the frequency-modulated carrier wave with an output signal of the sigma-delta modulator and outputs the amplitude-modulated carrier wave.
摘要:
A transmitting circuit apparatus has a first digital modulator and a second digital modulator for modulating an I signal and a Q signal which are multi-valued digital baseband modulation signals, into a digital I signal and a digital Q signal, respectively, having the number of bits smaller than that of the baseband modulation signals; and a quadrature modulator for outputting a signal synthesized from the signals generated by modulating (two) carrier waves each having a phase perpendicular to each other by using the modulated I and Q signals, respectively.
摘要:
A wavelength tunable filter device has at least two optical fibers through which an optical signal is input or output; a wavelength selective element which the optical signal is input to and output from through a lens and which selects a wavelength; a mounting jig to which the wavelength selective element is fixedly secured; a rotating mechanism, having an ultrasonic motor and an encoder, for rotating the wavelength selective element; and a motor controller for controlling the ultrasonic motor for driving, wherein the mounting jig is rigidly mounted directly to a rotating shaft of the ultrasonic motor, and the amount of power that does not exceed the driving power necessary to cause the ultrasonic motor to start rotating from a stopped condition is intermittently applied to the motor controller.
摘要:
In a package mounting an optical semiconductor module, an optical semiconductor module is supported by a supporter fixed on a metallic base such that the optical semiconductor module is inclined relative to the circuit board. Further, a lead pin of the optical semiconductor module is set as high as a signal input/output line of a high frequency circuit board. The lead pin is fixed at the shortest distance to the signal input/output line with solder. Thus, the performance of the optical semiconductor module is not deteriorated, and the other components on the circuit board are not affected. A circuit board may be arranged below the optical semiconductor module.