Abstract:
Provided are a method for producing a phosphor-encapsulating capillary tube in which, when a phosphor is encapsulated thereinto, fluorescence from the phosphor is less likely to leak from an end of the capillary tube; and such a phosphor-encapsulating capillary tube. One end portion 10A of an elongate glass capillary tube 10 having an outer shape of a transverse cross-section elongated in a width direction thereof is heated until the one end portion 10A of the glass capillary tube 10 has been melted, integrated, and thus sealed.
Abstract:
Provided are a method for producing a phosphor-encapsulating capillary tube in which, when a phosphor is encapsulated thereinto, fluorescence from the phosphor is less likely to leak from an end of the capillary tube; and such a phosphor-encapsulating capillary tube. One end portion 10A of an elongate glass capillary tube 10 having an outer shape of a transverse cross-section elongated in a width direction thereof is heated until the one end portion 10A of the glass capillary tube 10 has been melted, integrated, and thus sealed.
Abstract:
A glass ribbon has a thickness of 100 μm or less and comprises a convex curved surface portion or a side surface. The glass ribbon can be produced by heating a preform glass material having a thickness of 2 mm or less, and subjecting the preform glass material to drawing so that the preform glass material has a thickness of 100 μm or less.
Abstract:
A preliminary member of an optical device component with optical fiber comprises a long capillary tube made of glass or crystallized glass and an optical fiber which is fixed in the inner hole of the long capillary tube with adhesive. The overall length of the preliminary member is a plurality of times that of the optical device component or more. A plurality of short capillary tubes with optical fibers are formed by cutting the preliminary member. Thereafter, by polishing both end faces of the short capillary tube with optical fiber, an optical device component can be obtained.
Abstract:
In the capillary tube 22, the cross section of the outer surface is substantially square, and the cross section of the insertion hole 23 is substantially square. Sides La, Lb of the outer surface have high dimensional accuracy and the insertion hole 23 is made to allow two optical fibers 5, 6 to be inserted while adjoining each other and arranged in order therein. The phases of the outer surface and the insertion hole 23 are relatively offset with each other, so that angles &thgr;a, &thgr;b which the sides 23a, 23b of the insertion hole 23 form with flat surfaces 22a, 22b of the outer surface are acute angles of substantially 45°±0.5°. Consequently, the flat surface 22a becomes substantially parallel to the center line M that connects the centers of the cores 5a, 6a of the two optical fibers 5, 6 inserted in the insertion hole 23, and the flat surface 22b becomes substantially perpendicular to the center line M.
Abstract:
The present invention aims to simultaneously solve problems such as those related to the jig during skewing process of end surface at the final stage of production of glass capillary tube, and the shape of the exterior surface of the glass capillary tube being restricted by the structure of optical component such as optical waveguide device. Means for solving the problems include forming one or a plurality of flat portions 8, 9, and one or a plurality of partial cylindrical portions 10, 11 connected to such flat portions 8, 9 on exterior surface 7 of glass capillary tube 1 for holding optical fiber, all partial cylindrical portions 10, 11 being formed from a single central axis X and with the same radius, and forming insertion hole 3, into which optical fiber 2 is inserted and held, at a position deviated from central axis X in a direction perpendicular to first flat portion 8, which serves as a benchmark.
Abstract:
An object of the present invention is to very accurately position and align a plurality of optical fibers in each groove of a substrate for an optical fiber array, without leading to inappropriate upsizing and complication of an apparatus and increase in cost. To achieve the object, an optical-fiber aligning part 3 of a substrate 1 is formed, in parallel, with a plurality of grooves 2 at least on the top thereof, the plurality of grooves retaining and aligning a plurality of optical fibers 5. A cross section perpendicular to a longitudinal direction of the grooves 2 is recessed at a center portion of the top in the widthwise direction, and depths A of the grooves 2 provided at the center portion are shallower than depths A of the grooves 2 provided at both ends in the widthwise direction.
Abstract:
Provided is a capillary tube (1) for holding an optical fiber comprises: an insertion hole (2) for inserting and fixing the optical fiber (F) formed therein; a cylindrical surface (3) as an outer circumferential surface; and a groove (4) formed in the cylindrical surface (3) in an axial direction thereof, wherein regions from the cylindrical surface (3) to both inner side surfaces (5) of the groove (4) each have a projecting curved surface (6), and regions from both the inner side surfaces (5) of the groove (4) to a bottom of the groove (4) each have a recessed curved surface (7).
Abstract:
A glass capillary tube 1 is connected and fixed in a straight line to an optical component 5 having a substantially rectangular cross-section perpendicular to an optical axis 4a. Moreover, a top-surface side end portion 9 and a rear-surface side end portion 8 of an exterior surface 7 of the glass capillary tube 1 are positioned at the same level as the top surface and the rear surface of the exterior surface of the optical component 5 in the height-wise direction, respectively while the central axis of an insertion hole 3, which is provided in the glass capillary tube 1 and into which an optical fiber 2 is inserted and fixed, is matched with the optical axis 4a of the optical component 5.
Abstract:
A capillary tube holds an optical fiber. The capillary tube includes an insertion hole for inserting and fixing the optical fiber formed therein, a cylindrical surface as an outer circumferential surface, and a groove formed in the cylindrical surface in an axial direction thereof. Regions from the cylindrical surface to both inner side surfaces of the groove each have a projecting curved surface, and regions from both the inner side surfaces of the groove to a bottom of the groove each have a recessed curved surface.