摘要:
In ARQ where a plurality of mobile stations share and use a single channel for response signals (ACK/NACK signals), a wireless communication base station apparatus can prevent failure of the ARQ control. In this apparatus, a CRC part (114) performs an error detection using CRC for an uplink data, and generates, as a response signal, an ACK signal in a case of CRC=OK or a NACK signal in a case of CRC=NG. A retransmittal determining part (115) determines whether the response signal is for an initially transmitted data or for a retransmitted data. A constellation control part (116) controls, in accordance with a determination result of the retransmittal determining part (115), a constellation pattern to be used in a modulation in a modulating part (105). The modulating part (105) modulates the response signal for the retransmitted data in accordance with the constellation pattern controlled by the constellation control part (116), that is, a constellation pattern obtained by reversing the constellation pattern of the response signal for the initially transmitted data.
摘要:
In ARQ where a plurality of mobile stations share and use a single channel for response signals (ACK/HACK signals), a wireless communication base station apparatus can prevent failure of the ARQ control. In this apparatus, a CRC part (114) performs an error detection using CRC for an uplink data, and generates, as a response signal, an ACK signal in a case of CRC=OK or a NACK signal in a case of CRC=NG. A retransmittal determining part (115) determines whether the response signal is for an initially transmitted data or for a retransmitted data. A constellation control part (116) controls, in accordance with a determination result of the retransmittal determining part (115), a constellation pattern to be used in a modulation in a modulating part (105). The modulating part (105) modulates the response signal for the retransmitted data in accordance with the constellation pattern controlled by the constellation control part (116), that is, a constellation pattern obtained by reversing the constellation pattern of the response signal for the initially transmitted data.
摘要:
Provided is a wireless communication apparatus by which the maximum throughput can be obtained while satisfying required reception qualities in multicarrier communication. In the apparatus, a coding section (101) performs error correction coding to all of the plurality of resource blocks at a same coding rate, modulating sections (103-1 to 103-n) generate data symbols by modulating coding data for each of the resource blocks (1 to n), and repetition sections (104-1 to 104-n) repeat the data symbols inputted from the modulation section (103) for each of the resource blocks (1 to n) to generate a plurality of same data symbols. Namely, while the coding rate is same in all of the resource blocks, modulation system and the number of repetitions differ by resource block.
摘要:
Provided is a wireless communication apparatus by which the maximum throughput can be obtained while satisfying required reception qualities in multicarrier communication. In the apparatus, a coding section (101) performs error correction coding to all of the plurality of resource blocks at a same coding rate, modulating sections (103-1 to 103-n) generate data symbols by modulating coding data for each of the resource blocks (1 to n), and repetition sections (104-1 to 104-n) repeat the data symbols inputted from the modulation section (103) for each of the resource blocks (1 to n) to generate a plurality of same data symbols. Namely, while the coding rate is same in all of the resource blocks, modulation system and the number of repetitions differ by resource block.
摘要:
Provided is a wireless communication apparatus by which reduction of a diversity gain can be suppressed at minimum in the case of employing a repetition technology in multicarrier communication. In the wireless communication apparatus (100), repetition sections (102-1 to 102-n) repeat each data symbol inputted from modulating sections (101-1 to 101-n) to create a plurality of identical data symbols. An allocating section (103) outputs each data symbol to a multiplexing section (105) by allocating the data symbol to a plurality of subcarriers constituting an OFDM symbol. At this time, the allocating section (103) allocates at least one of the repeated identical symbols to a subcarrier different from a subcarrier to which the symbol is allocated in an adjacent sector.
摘要:
Provided is a wireless communication apparatus by which reduction of a diversity gain can be suppressed at minimum in the case of employing a repetition technology in multicarrier communication. In the wireless communication apparatus (100), repetition sections (102-1 to 102-n) repeat each data symbol inputted from modulating sections (101-1 to 101-n) to create a plurality of identical data symbols. An allocating section (103) outputs each data symbol to a multiplexing section (105) by allocating the data symbol to a plurality of subcarriers constituting an OFDM symbol. At this time, the allocating section (103) allocates at least one of the repeated identical symbols to a subcarrier different from a subcarrier to which the symbol is allocated in an adjacent sector.
摘要:
A multicarrier transmitting apparatus capable of improving the data symbol error rate characteristic to improve the reception quality. In this apparatus, a replacement position deciding part (141) decides, based on a number of replacements notified of by a scheduler (110), which one of a plurality of data symbols should replaced by a second pilot. Herein, a restricted condition, which is ‘RF after replacement is equal to or greater than RF before replacement minus one’, is satisfied. A replacing part (142) replaces, in accordance with the replacement position outputted from the replacement position deciding part (141), a part of the data symbols included in a repetition signal by a second pilot symbol, and outputs the resultant replaced signal to an IFFT part (105).
摘要:
A radio communication apparatus is provided that enables degradation of error rate performance due to puncturing to be minimized when an LDPC code is used as an error correcting code. In this apparatus, a padding bit insertion section 101 inserts padding bits in a transmission bit sequence based on a parity check matrix, and outputs the generated bit sequence to an LDPC encoding section 102. Using the parity check matrix, LDPC encoding section 102 performs LDPC encoding on the bit sequence input from padding bit insertion section 101, and obtains an LDPC codeword composed of systematic bits and parity bits. Then a puncturing section 103 eliminates padding bits from the LDPC codeword input from. LDPC encoding section 102, and also punctures parity bits in the LDPC codeword in order starting from a parity bit corresponding to a variable node for which the total number of connections to padding bits via check nodes is larger.
摘要:
Provided is a multicarrier communication apparatus by which information quantity of CQI reporting can be reduced. In the apparatus, each CQI is recorded in a CQI table section (122) by being classified into a plurality of CQI groups by following a certain rule. A CQI selecting section (123) estimates fluctuation range and variance of reception qualities of the entire resource block to be reported, based on an SINR value outputted from a quality level calculating section (121). Then, based on the estimated values, the CQI selecting section selects a suitable CQI group in a first step, selects a suitable CQI value from among the CQIs included in the selected CQI group in a second step, and outputs the ID of the selected CQI group and the selected CQI value to a CQI generating section (124) . Based on such information, the CQI generating section (124) generates a CQI frame to be transmitted to a base station.
摘要:
Provided is a multicarrier communication apparatus by which information quantity of CQI reporting can be reduced. In the apparatus, each CQI is recorded in a CQI table section (122) by being classified into a plurality of CQI groups by following a certain rule. A CQI selecting section (123) estimates fluctuation range and variance of reception qualities of the entire resource block to be reported, based on an SINR value outputted from a quality level calculating section (121). Then, based on the estimated values, the CQI selecting section selects a suitable CQI group in a first step, selects a suitable CQI value from among the CQIs included in the selected CQI group in a second step, and outputs the ID of the selected CQI group and the selected CQI value to a CQI generating section (124). Based on such information, the CQI generating section (124) generates a CQI frame to be transmitted to a base station.