摘要:
A system for controlling the operating condition of an engine in which a temperature sensing element constitutes an airflow measuring device disposed in an intake air passage of the engine. The temperature sensing element is supplied with a heating current in response to a start pulse signal produced with every one-half period of each combustion cycle of the engine. A comparator delivers an output signal when a reference temperature set on the basis of the air temperature measured by an auxiliary temperature sensing element is reached by the temperature of the temperature sensing element. A pulse signal indicative of the time interval between the generation of the start pulse signal and a rise in the output signal of the comparator is delivered as an airflow measurement signal. The average airflow quantity responsive to one combustion cycle of the engine is detected, and a correction factor K is calculated from the difference between two airflow rate data measured in each combustion cycle and the average airflow quantity. Based on the correction factor K, the injection quantity, injection timing and the like are calculated.
摘要:
An engine control apparatus has an air flow rate measuring device for measuring an intake air flow rate. A temperature sensing element having a temperature characteristic and constituting the device is arranged in an intake pipe. The device generates an output pulse signal having a pulse width T corresponding to the intake air flow rate. An engine control unit has the one-dimensional map for storing the relationship between the engine speed N and the pulse width to of the signal corresponding to the air flow rate. This data to is read out from the one-dimensional map in accordance with the engine speed N. Subsequently, the data to is subtracted from the data T to calculate a time duration t. The unit also has a two-dimensional map for storing the relationship between each time duration t and the corresponding rate G/N in correspondence with each of the present engine speeds. A corresponding rate G/N is read out from the two-dimensional map in response to the calculated time duration t. The resultant rate G/N is used to calculate fuel injection quantity.
摘要:
A control system for an engine has a temperature sensitive element as part of a device for measuring the air flow in an air intake manifold to the engine. Further, a first pulse signal is generated, corresponding to the rotation of the engine, for controlling the setting of a flip-flop. A transistor is conducted in the set state of the flip-flop to supply a heating electric current to the element. The element supplied with the current is raised to the temperature that corresponds to the air flow in the manifold. When the temperature of the element is raised until the specified temperature difference to the air temperature (measured by a sub temperature sensitive element) is set, the temperature difference is detected by a comparator, and the flip-flop is reset by the detection signal. A pulse-shaped signal corresponding to the set state of the flip-flop is produced as a measurement output signal, supplied as one detection signal of the operating state of the engine to an engine control unit, and the current to the element is controlled to be supplied by the pulse-shaped signal.
摘要:
An engine control apparatus for controlling the quantity of fuel injected into the engine is equipped with an intake air flow rate measuring device for detecting the operating state of the engine. This measuring device has a heat sensitive element, which is located in the intake pipe, and outputs a pulse signal having a pulse width T corresponding to the intake fuel amount. Engine control apparatus has a plurality of map memory means in which a plurality of functions f.sub.1 (N), f.sub.2 (N), f.sub.3 (N), which express the polynomial approximation ##EQU1## for expressing the air flow rate G/N per engine revolution, are stored as the parameters of the number of engine rotations N. These functions are read out from the maps and, based on the number of engine rotations N, the fuel injection amount corresponding to the pulse width T of the air flow rate is calculated.
摘要:
An air flowrate measuring apparatus with a heat wire measures the flow rate of the air flowing through the intake pipe of an engine. The apparatus has a temperature sensitive element which has a specific temperature-resistance characteristic and is disposed in the intake pipe. Constant heating voltage is applied to this element in response to a start signal, thus heating the element. When the temperature of the element rises to a specified value, the application of the voltage is stopped. At the same time, a pulse signal whose width corresponds to the period of applying the voltage is generated. The signal is supplied to an interface circuit through a drive circuit driven by a reference voltage which has been also used to control the heating voltage. The interface circuit comprises two wave-shaping circuits. The first wave-shaping circuit has a filter means of a small integration time constant. The second wave-shaping circuit has a filter means whose integration time constant is large enough to remove noise from the input signal.
摘要:
A heat generating element having a thermal characteristic such that its resistance varies in response to changes in temperature is provided in the intake pipe of an engine. A heating power, the voltage of which is set by a reference voltage source, is supplied to the heat generating element via a transistor. The supply of this heating power is controlled by a start pulse signal periodically generated by a set flip-flop circuit when the ignition switch is on. When the heat generating element reaches a predetermined temperature, the supply is cut off by the flip-flop circuit. A measurement signal having a pulse width corresponding to the time period of heating power supply is generated from the flip-flop circuit. The opening of the ignition switch is detected and a one-shot multivibrator is driven to produce a burn-off signal having a pulse width to which the burn-off period corresponds. This burn-off control signal turns the transistor on and heating power is supplied to the heat generating element and the voltage of the reference power source is reduced so that the voltage of the heating power is switched to a low level.
摘要:
Disposed in an intake pipe of an engine is a temperature-sensitive element formed of a resistance element whose resistance value varies with temperature. A heating current is supplied to the temperature-sensitive element through a transistor. The voltage of the heating current is set by a constant-voltage circuit. The temperature of the temperature-sensitive element is compared with a reference temperature of an auxiliary temperature-sensitive element. When the temperature of the temperature-sensitive element is increased to a predetermined level, an output signal is delivered from a comparator. A flip-flop circuit is reset by the output signal from the comparator, and is set by a start pulse signal. When the flip-flop circuit is set, the transistor is turned on, allowing the heating current to be supplied to the temperature-sensitive element. A burning-off instruction signal is supplied to a monostable multivibrator, and a signal with a duration suited for the burning-off operation is delivered from an AND circuit. In response to the output signal from the AND circuit, the flip-flop circuit is held set, and a reference voltage supplied to the differential amplifier is changed to a low level.
摘要:
The intake airflow rate supplied to an internal combustion engine is measured and an obtained airflow rate measurement signal is used for detecting the operating state of the internal combustion engine. The internal combustion engine is electronically controlled, and an airflow rate measuring unit includes a heat-generating element having a temperature-resistance characteristic. A heating current which rises in correspondence with a signal synchronous with rotation of the engine is supplied to the heat-generating element. The heating current is controlled to rise when the heat-generating element is heated to a predetermined temperature, and the heating current duration indicates the airflow rate measurement signal. A burn-off command signal is generated so as to burn off dust attached to the heat-generating element. The command signal is used to generate a periodic signal having a preset effective duration. The pulse signal sets a continuous supply of the heating current to the element for the pulse duration, so that the heat-generating element is heated to a temperature for burning off dust attached thereto.
摘要:
A rotation signal Ne is generated for every 1.degree. of rotation of the engine crankshaft together with a crankshaft angle signal G for every 360.degree. of crankshaft rotation. In response to each rotation signal Ne, a pseudo random number generator generates random number data which is converted to analog data by a D/A converter and supplied to a comparator circuit. An intake air pressure detection data Pim is also supplied to the comparator circuit and the two signals are compared. When the detection data Pim is larger than the converted analog data, the comparator output level is high. The output from the comparator is read for every rotation signal Ne and, when the detection data is larger than the analog data from the D/A converter, a counter is incremented. The count value is read for every generation of the crankshaft signal G and is supplied to the engine control unit as the intake air pressure detection data. The counter is then reset to the initial count value.
摘要:
In an apparatus for controlling an engine, as an air flow sensor for measuring intake air flow quantity, a heater resistor having temperature-resistance characteristic and a temperature sensitive resistor for sensing air temperature are provided in an intake passage, and heating electric power is supplied to the heater resistor in response to a start signal generated periodically. The heating electric power is cut off when the temperature of the heater resistor is raised to a specified reference temperature predetermined in accordance with the air temperature, so that an output signal indicative of the time width in which the heating electric power is supplied is applied to an electronic control unit to measure air flow quantity therefrom. Further, compensation coefficient stored in a memory is derived in correspondence to the intake air temperature sensed by the temperature sensitive resistor, and the output signal is compensated for by the compensation coefficient to compensate the measured air flow quantity. Based on the compensated air flow quantity, fuel injection quantity, ignition timing or the like is computed in the electronic control unit.