摘要:
A wireless electronic device may serve as a device under test in a test system. The test system may include an array of over-the-air antennas that can be used in performing over-the-air wireless tests on the device under test (DUT). A channel model may be used in modeling a multiple-input-multiple-output (MIMO) channel between a multi-antenna wireless base station and a multi-antenna DUT. The test system may be configured to perform over-the-air tests that emulate the channel model. A design and analysis tool may be used to identify an optimum over-the-air test system setup. The tool may be used in converting a geometric model to a stochastic model for performing conducted tests. The tool may be used in converting a stochastic model to a geometric model and then further convert the geometric model to an over-the-air emulated stochastic model. The over-the-air emulated stochastic model may be used in performing conducted tests.
摘要:
A wireless electronic device may serve as a device under test in a test system. The test system may include an array of over-the-air antennas that can be used in performing over-the-air wireless tests on the device under test (DUT). A channel model may be used in modeling a multiple-input-multiple-output (MIMO) channel between a multi-antenna wireless base station and a multi-antenna DUT. The test system may be configured to perform over-the-air tests that emulate the channel model. A design and analysis tool may be used to identify an optimum over-the-air test system setup. The tool may be used in converting a geometric model to a stochastic model for performing conducted tests. The tool may be used in converting a stochastic model to a geometric model and then further convert the geometric model to an over-the-air emulated stochastic model. The over-the-air emulated stochastic model may be used in performing conducted tests.
摘要:
A single-input single-output (SISO) downlink channel with K users is analyzed in the presence of Rayleigh flat fading. A limited channel state information (CSI) feedback scheme is included, where only an outdated 1-bit feedback per user is available at the base station for each fading block. A closed-form expression for the achievable ergodic sum-rate of the 1-bit feedback scheme is presented for any number of users, as a function of the fading temporal correlation coefficient, the threshold of the 1-bit CSI quantizer and the SNR. The sum-rate scales with increasing number of users as log logK, which is the same scaling law achieved by the optimal non-delayed full CSI feedback scheme.
摘要:
A single-input single-output (SISO) downlink channel with K users is analyzed in the presence of Rayleigh flat fading. A limited channel state information (CSI) feedback scheme is included, where only an outdated 1-bit feedback per user is available at the base station for each fading block. A closed-form expression for the achievable ergodic sum-rate of the 1-bit feedback scheme is presented for any number of users, as a function of the fading temporal correlation coefficient, the threshold of the 1-bit CSI quantizer and the SNR. The sum-rate scales with increasing number of users as log log K, which is the same scaling law achieved by the optimal non-delayed full CSI feedback scheme.