摘要:
Provided are a method, system, and program for reassigning storage volumes from a failed processing system to a surviving processing system. A first processing system detects a failure of a second processing system. The first processing system determines device groups of storage devices managed by the failed second processing system and determines for each determined device group, hosts that connect to storage devices in the device group. The first processing system sends, for each device group, a unit check to each determined host indicating failure of each device group through one storage device in the device group to which the determined host connects. The determined hosts execute instructions to terminate any I/O operations in progress on the storage devices in the device group in response to the unit check indicating failure of one storage device in the device group and issue, a command to one storage device for the device group to end the busy condition.
摘要:
Provided are a method, system, and program for reassigning storage volumes from a failed processing system to a surviving processing system. A first processing system detects a failure of a second processing system. The first processing system determines device groups of storage devices managed by the failed second processing system and determines for each determined device group, hosts that connect to storage devices in the device group. The first processing system sends, for each device group, a unit check to each determined host indicating failure of each device group through one storage device in the device group to which the determined host connects. The determined hosts execute instructions to terminate any I/O operations in progress on the storage devices in the device group in response to the unit check indicating failure of one storage device in the device group and issue, a command to one storage device for the device group to end the busy condition.
摘要:
Provided are a method, system, and article of manufacture for assigning alias addresses to base addresses. An assignment is provided of base addresses to the devices. The base addresses are used to access the devices assigned to the base addresses. An assignment is provided of a plurality of alias addresses to an alias address pool. The alias addresses in the alias address pool are capable of being dynamically assigned to the devices to service I/O requests to the devices. An Input/Output (I/O) request to access one target device comprising one of the devices is processed. A determination is made as to whether the base address assigned to the target device is available. One alias address is assigned to the target device in response to determining that the base address is not available. The I/O request is issued to the assigned alias address to transmit the request to the target device.
摘要:
Provided are a method, system, and program for reassigning storage volumes from a failed processing system to a surviving processing system. A first processing system detects a failure of a second processing system. The first processing system determines device groups of storage devices managed by the failed second processing system and determines for each determined device group, hosts that connect to storage devices in the device group. The first processing system sends, for each device group, a unit check to each determined host indicating failure of each device group through one storage device in the device group to which the determined host connects. The determined hosts execute instructions to terminate any I/O operations in progress on the storage devices in the device group in response to the unit check indicating failure of one storage device in the device group and issue, a command to one storage device for the device group to end the busy condition.
摘要:
Provided are a system and article of manufacture for providing an address format compatible with different addressing formats used for addressing different sized address spaces. An address format is used in an operating system to address storage space in a storage device comprising a first region and a second region of storage space. A first group of applications uses the address format to only address the storage space in the first region and is not coded to use the address format to access the second region and a second group of applications uses the address format to address the storage space in the first and second regions.
摘要:
Provided are a system and article of manufacture for providing an address format compatible with different addressing formats used for addressing different sized address spaces. An address format is used in an operating system to address storage space in a storage device comprising a first region and a second region of storage space. A first group of applications uses the address format to only address the storage space in the first region and is not coded to use the address format to access the second region and a second group of applications uses the address format to address the storage space in the first and second regions.
摘要:
An apparatus, system, and method are disclosed for accessing a preferred path through a storage controller. A request module receives a request from a host to identify a preferred path from the host to a control unit image. A response module reports the preferred path to the host. A connection module connects the host through the preferred path to the control unit image. In one embodiment, a detection module detects a failure of a first interconnection module comprising the preferred path. The connection module may re-connect the host to the control unit image through a non-preferred path comprising a second interconnection module in response to the failure of the first interconnection module.
摘要:
Missing interrupt handler (MIH) software features for supporting a variable MIH timeout for I/O requests issued by an operating system (OS). The MIH timeout is varied to prevent a false indication of a failure in an I/O device operation, which is indicated if the MIH timeout occurs. By extending the MIH timeout, the I/O device is given more time to complete its operation, and the extension is provided when the device control unit (CU), or the OS, determines an I/O operation cannot complete before the shortest available MIH timeout. The length of a primary MIH timeout period is extended to a secondary MIH timeout period in response to the OS detecting that an I/O request has a long command that requires a long operating time in the I/O device, or a signal from the device's CU indicating that the current operation in the I/O device is taking an excessive time without the device being in any error condition.
摘要:
Missing interrupt handler (MIH) internal software features support a variable MIH timeout for I/O requests issued by an operating system (OS), when the same OS is involved with both an executing I/O request and a waiting I/O request. The OS varies its MIH timeout period without a signal from any I/O entity to prevent a false indication of a potential failure in a current I/O device operation. If a current I/O request has not completed when the OS senses the end of a primary MIH timeout period, started when issuing that request, the OS then scans the I/O program of that I/O request for any contained long-running command. (Most I/O requests complete during their primary MIH timeout period.) If a long command is found, the OS extends the MIH timeout period from the primary MIH timeout period to a long MIH timeout period, The latter gives the I/O device more time to complete its operation before the OS indicates it has a potential I/O error condition. But if the OS does not detect any long-running command in its scan of the I/O program, the OS does not extend the primary MIH timeout period, and then the OS declares a potential I/O error condition for the current I/O device operation and invokes a conventional I/O error recovery program, such as retrying that I/O request for a number of times until it runs without error or until a permanent error condition is determined.
摘要:
I/O control unit (CU) features for supporting multiple host operating systems (OSs) which use missing interrupt handler (MIH) timeout functions for detecting potential failures of requested I/O device operations. These CU features support multiple host OSs by preventing them from falsely indicating I/O device failures, when in fact the device has not failed but is merely processing one or more other requests for other host Oss.